Simulink Defined Radio
with Raspberry Pi2

Raspberry Pi

Telecommunication
Experience

Ver. 1.1
May, 2016

Gianni Pasolini*, Alessandro Bazzi®, Mirko Mirabella™

WiLab - Wireless Communications Lab

* Dept. of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”
University of Bologna, Italy

° Institute of Electronics, Computer and Telecommunication Engineering
National Research Council, Italy

T CNIT - Italian Inter-University Consortium for Telecommunication

MATLAB Lo S>> @Qlar cnit:

Raspberry Pi2 - TLC

This work has been funded by MathWorks in the framework of the Academic Support A#: 1-
207348844 7.

Corresponding author

Gianni Pasolini, Univ. of Bologna (Italy).
Phone +39 051 2093553

Email: gianni.pasolini@unibo.it

Acknowledgments

This activity has been carried out at the Wireless Communications Lab (WiLAB) of the Uni-
versity of Bologna/National Research Council. The authors wish to thank the WiL AB Director,
Prof. Oreste Andrisano, for his comments and suggestions and for providing all technical facili-
ties.

The authors wish to thank Stefano Olivieri (MathWorks Italy) for his helpful suggestions and
support.

Trademarks

MATLAB and Simulink are trademarks of Mathworks Inc. in the United States and other
countries.

Raspberry Pi is a trademark of the Raspberry Pi Foundation in the United Kingdom and other
countries.

Document versions

Version 1.0, October 2015: first release of this document.

Version 1.1, May 2016: Besides other minor modifications, the new Chapter 8 has been added,
dealing with the QPSK modulation.

Note: the latest version of this document can be found, along with all the Simulink projects, at
www.stmulinkdefinedradio.com

G. Pasolini, A. Bazzi, M. Mirabella 2 Stmulink Defined Radio

Contents

1 Raspberry Pi2 and Simulink configuration

1.1
1.2
1.3
14
1.5
1.6
1.7

Hardware Support Packages
Equipment
Hardware Support Package Installation
Installation of the Raspberry Pi™OS and network configuration
Installation and configuration of the USB to LAN converter
Raspberry Pi2 Power On L o
Controlling the Raspberry Pi2 through MATLAB

2 Sound card configuration

21

3.1
3.2
3.3

External sound card configuration. Lo

The workstation

Personal Computer e
The equipment e
The workstation

4 Raspberry Pi2 as a signal generator

4.1
4.2

4.3

4.4
4.5

Equipment required for this experience
Raspberry Pi2 as a sine wave signal generator
4.2.1 Sine Wave macroblocko L
4.2.2 Raspberry Pi output macroblock L.
4.2.3 Control LED macroblock o
Elementary blocks usedo oo
4.3.1 Sine Wave
4.3.2 Data Type Conversion o e
4.3.3 Matrix Cancatenate L
434 ALSA Audio Playback
4.3.5 Pulse Generator L
4.3.6 LED
Settings for the hardware execution of the project
Hardware execution of the project
4.5.1 Launching the execution within Simulink
4.5.2 Launching the execution with Matlab commands
4.5.3 Launching the execution with Linux commands

3

© 00 I

10
14
16
18

23
25

29
29
30
32

Raspberry Pi2 - TLC

5 Raspberry Pi2 as a digital filter 53
5.1 Equipment required for this experience 53
5.2 Raspberry Pi2 as digital filtero oo 23
5.3 Elementary blocksused Lo 25

5.3.1 ALSA Audio Capture 56
5.3.2 Digital Filter Design o 57
5.3.3 Data Type Conversion o7
5.3.4 ALSA Audio Playbacko 57
5.3.5 Implementation and test of the digital filter 58

6 Baseband modulations with Raspberry Pi2 61
6.1 Equipment required for this experience 62
6.2 Raspberry Pi2 as 2-PAM transmitter L. 62
6.3 Elementary blocksused Lo 63

6.3.1 Bernoulli Binary Generator 64
6.3.2 M-PAM Modulator Baseband 65
6.3.3 Complex to Real-Imag L oo 66
6.3.4 Raised Cosine Transmit Filter 66
6.3.5 Max-Divide-Gain (Automatic Gain Control) 69
6.3.6 Implementation and test of the 2-PAM transmitter 69
6.4 Raspberry Pi2 as a 4-PAM transmitter 70
6.5 Elementary blocks used L L 72
6.5.1 Bernoulli Binary Generator 72
6.5.2 M-PAM Modulator Baseband 73
6.5.3 Complex to Real-Imag L o 74
6.5.4 Raised Cosine Transmit Filter 75
6.5.5 Max-Divide-Gain (Automatic Gain Control) 75
6.5.6 Data Type Conversion 75
6.5.7 Matrix Concatenateo 75
6.5.8 ALSA Audio Playback oo 76
6.5.9 Implementation and test of the 4-PAM transmitter 76
6.6 PAM modulations with square pulses L. 76
6.6.1 BaseBand Modulation o 0L 77
6.6.2 2-PAM and 4-PAM transmitters with square pulses implementation and
check L 78

7 2-ASK and 4-ASK modulations with Raspberry Pi2 83
7.1 Equipment required for this experience oL 84
7.2 2-ASK transmitter 85

7.2.1 Baseband Modulationo 86
7.2.2 Raspberry Pi system input o oo 86
7.2.3 Product 86
7.24 Max-Divide-Gain (Automatic Gain Control) 86
7.2.5 Raspberry Pioutput 86
7.2.6 Control LED 86
7.3 Elementary blocks used Lo 87

G. Pasolini, A. Bazzi, M. Mirabella 4 Stmulink Defined Radio

Raspberry Pi2 - TLC

7.3.1 Bernoully Binary Generator 87
7.3.2 M-PAM Modulator Baseband L. 87
7.3.3 Complex to Real-Imag 0. 87
7.3.4 Raised Cosine Transmit Filter 87
7.3.5 ALSA Audio Capture 87
7.3.6 Multiport selector 88
7.3.7 Data Type Conversion o 88
7.3.8 Product 88
7.3.9 Max-Divide-Gain (Automatic Gain Control) 89
7.3.10 Matrix Concatenate 89
7.3.11 ALSA Audio Playback 90
7.3.12 Implementation and test of the 2-ASK transmitter 90

7.4 4-ASK transmitter 90
7.5 FElementary blocks used L 91
7.5.1 Implementation and test of the 4-ASK transmitter 91

8 QPSK modulation with Raspberry Pi2 93
8.1 Equipment required for this experience o0 94
8.2 QPSK transmittero 94
8.2.1 BaseBand Modulation - Quadrature Phase Shift Keying 95
822 BBtoIF e 96
8.2.3 Max-Divide-Gain (Automatic Gain Control) 96
8.2.4 Raspberry Pioutput o 96
825 Control LED 96

8.3 List of the adopted Simulink blocks 97
8.3.1 Bernoully Binary Generator L. 97
8.3.2 QPSK Modulator Baseband 000 97
8.3.3 Complex to Real-Imag 98
8.3.4 Raised Cosine Transmit Filter 99
8.3.5 Sine Wave/Cosine Wave L L. 99
8.3.6 Data Type Conversion 99
8.3.7 Max-Divide-Gain (Automatic Gain Control) 100
8.3.8 Matrix Concatenate 100
8.3.9 ALSA Audio Playback 100
8.3.10 Implementation and test of the QPSK transmitter 100

9 2-FSK modulation with Raspberry Pi2 103
9.1 Equipment required for this experience Lo oL 104
9.2 2-FSK transmittero 104
9.2.1 Baseband Modulation 00000 106
9.2.2 Frequency Modulationo oL 106
9.2.3 Raspberry Pioutput 107
9.24 Control LED 107

9.3 Elementary blocks used 107
9.3.1 Bernoully Binary Generator L. 108
9.3.2 M-PAM Modulator Baseband L. 108

G. Pasolini, A. Bazzi, M. Mirabella 5) Stmulink Defined Radio

Raspberry Pi2 - TLC

9.3.3 Complex to Real-Imag 108
9.3.4 FIR Interpolation L 108
9.3.5 SineWave 108
9.3.6 Saturation L 108
9.3.7 Gain 109
9.3.8 Product 110
9.3.9 Add 110
9.3.10 Data Type Conversion 110
9.3.11 Matrix Concatenate o 110
9.3.12 ALSA Audio Playback 111
9.3.13 Implementation and test of the 2-FSK transmitter 111
10 Raspberry Pi2 as an OFDM transmitter 113
10.1 Equipment required for the realization of this experience 113
10.2 Raspberry Pi2 as OFDM transmitter 114
10.2.1 Baseband Modulation 0 oo 114
10.2.2 OFDM e 117
10.2.3 Upsamplingo 119
10.2.4 BBtolF 120
10.2.5 Max-Divide-Gain (Automatic Gain Control) 121
10.2.6 Raspberry Pioutput 122
10.2.7 Control LED 122
10.3 Elementary blocks used Lo L 122
10.3.1 Bernoully Binary Generator 124
10.3.2 M-PAM Modulator Baseband 125
10.3.3 Complex to Real-Imag 125
10.3.4 Multiport Selectoro 125
10.3.5 Pad 126
10.3.6 Constant 126
10.3.7 Matrix Concatenate 126
10.3.8 TIFFT . o o o e 126
10.3.9 Frame Conversion 126
10.3.10Upsample e 127
10.3.11 Digital Filter Design o 127
10.3.12Sine Wave/Cosine Wave 127
10.3.13Producto 127
10.3.14Add o e 127
10.3.15 Max-Divide-Gain (Automatic Gain Control) 128
10.3.16 Data Type Conversion 128
10.3.17 Matrix Concatenateo 128
10.3.18 ALSA Audio Playbacko 128
10.3.19 Implementation and test of the OFDM transmitter 128

G. Pasolini, A. Bazzi, M. Mirabella 6 Stmulink Defined Radio

Chapter 1

Raspberry Pi2 and Simulink
configuration

Figure 1.1: Raspberry Pi2 model B

In order to connect the small and cheap Raspberry Pi2 single-board computer (Fig:1.1) with
MATLAB and Simulink, some preliminary operations must be performed. The configuration
procedure described in this chapter allows the communication between the PC hosting MAT-
LAB/Simulink and the Raspberry Pi2 board, without the need to add a keyboard, a monitor,
and a mouse to the Raspberry Pi2, with evident benefits in terms of system setup.

Please note that, although the concepts described in this document are of general validity,
small changes in the graphical representation or available options may be observed for versions
of MATLAB that are different from the R2015a used in this document.

1.1 Hardware Support Packages

The growing availability of low cost prototyping boards, microcontrollers and single-board com-
puters, suggested Mathworks to develop specific Hardware Support Packages that expand the
functionalities of MATLAB and Simulink, allowing them to interface with a variety of devices
developed by third-party vendors.

Raspberry Pi2 - TLC

(a) Raspberry Pi2 model B (b) USB-micro USB cable (c) Micro SD memory
card with adapter

(d) USB to LAN converter (e) Ethernet cable (f) USB Hub

Figure 1.2: Basic equipment

In this chapter we describe, in particular, the procedure to install the Raspberry Pi Sup-
port Package, that extends both MATLAB and Simulink libraries and updates the Raspberry
Pi™operating system (OS).

The prerequisites and the equipment required to successfully complete the operation are
detailed in the following section.

1.2 Equipment

The installation of the Raspberry Pi Support Package requires a PC equipped with MAT-
LAB/Simulink as well as an SD memory-card slot. The following items are also necessary:

Nr.1 Raspberry Pi2 model B (Fig.1.2(a));

Nr.1 USB-micro USB cable for the power supply (Fig.1.2(b));
e Nr.l1 micro SD memory-card, with an SD adapter if needed by the PC (Fig.1.2(c));

Nr.1 USB to LAN converter, needed in some cases, as detailed in Section 1.5 (Fig.1.2(d));
e Nr.1 Ethernet cable (Fig.1.2(e));
e Nr.1 USB hub, needed in case the PC has only two USB ports (Fig.1.2(f)).

Moreover, a Mathworks account is needed (free registration at www.mathworks.com).

G. Pasolini, A. Bazzi, M. Mirabella 8 Stmulink Defined Radio

Raspberry Pi2 - TLC

[:;-"_T; Community
S Request Support
Rl pp

L= ﬁ Get Mare Apps -

Get Hardware Support Packages I

4\ Get Mathworks Products
=
L1

Package a Toolbox

¢ @

Manage Custom Toolboxes

Check for Product Updates

Figure 1.3: Get the Hardware Support Packages

4\ Support Package Installer - — -— O =] 4\ Support Package Installer [=5 i)

Select an action Select support package to install

Q) Install from Internet Show: [All (73) -

") Dowinload from Internet Support for: Support packages:

*) Install from folder NEDCPower - Installed Latest

- NEDMM oy Version \Version BRI

NEFGEN
Acquire sensor and image

NESCOPE 1) Tnstall 1511 ota from your Raspherry pi. MATHA

NE-Switch
1. pherry Pi.
} Help me to select an action iR and 1P 9 [V] Install 15.1.2 Run models on Raspberry Pi. Simulink

NEXNET

0S Generic Video Interface

Ocean Optics Spectrometers
PEAK-System CAN Devices

Point Grey Hardware

QImaging Hardware

RTL-SDR Radio

Raspberry Pi

STMicroelectronics Microcontrollers
Samsung GALAXY

Teledyne DALSA IFC Hardware
Teledyne DALSA Sapera Hardware
Texas Instruments C2000

Texas Instruments C2000 Concerto
Texas Instruments C6000

Total Phase Aardvark I2C/SP! Interface
USB Webcams

USRP Radio ~| e i

- Base
*) Uninstall

]

Required

Product

D

Tnstallation folder: C:\MATLAB\SupportPackages\R2015a Browse...

wet> | [cancel | [hep <pack || Nea> || comeal ||

Help

I

Figure 1.4: Select an action Figure 1.5: Select support package to install

1.3 Hardware Support Package Installation

The Raspberry Pi Support Package can be downloaded and installed directly in the MATLAB
environment through Add-Ons—Get Hardware Support Packages, as shown in Fig. 1.3.

When requested (see Fig.1.4, select the option Install from Internet and continue, clicking
Next.

Once you have selected the support package for Raspberry Pi™, as shown in Fig.1.5, click
Next. Click then OK when the window shown in Fig.1.6 is displayed.

The installation procedure continues with the request to log-in with a registered Mathworks
account, as shown in Fig.1.7. Click Log In and enter your log-in information in the window
shown in Fig.1.8.

Accept the licence conditions shown in Fig.1.9 and click Nezt. Click Next once more when
the window shown in Fig.1.10 is displayed.

Finally, click Install when the confirmation request shown in Fig.1.11 appears.

The procedure continues with the installation of the MATLAB Support Package for

G. Pasolini, A. Bazzi, M. Mirabella 9 Stmulink Defined Radio

Raspberry Pi2 - TLC

o support Package Installer e B)

Log in to MathWorks Account

Please log in to your MathWorks account to continue the installation.
Click "Log In" to continue.

4 Required support packages | — e ZX

Installation or update of "Simulink Support Package for Raspberry Pi
@ Hardware" may install or update the following required support packages:

- MATLAB Support Package for Raspberry Pi Hardware

Cancel <sack [togm || conel |[hep

Figure 1.6: Required support package Figure 1.7: Log in to Mathworks Account

Raspberry Pi Hardware and the Simulink Support Package for Raspberry Pi Hard-
ware.

At the end of the installation, the window shown in Fig.1.12 is displayed. MATLAB and
Simulink are now ready to interact with Raspberry Pi™devices.

The next step is the installation of the Raspberry Pi™OS on a micro SD card and the
configuration of the connection between the PC and the Raspberry Pi™.

Before clicking Continue in the window shown in Fig.1.12, thus starting the OS installation, it
is necessary to establish how to configure the network connection between the Raspberry Pi™and
the PC. This aspect will be discussed in the following section.

1.4 Installation of the Raspberry Pi™OS and network configura-
tion

Communications between MATLAB/Simulink and the Raspberry Pi2 board occur through a
network connection, that must be properly set up.

The configuration procedure can be performed during the installation of the Raspberry Pi2
OS, that takes place after the above described Hardware Support Package installation, or later,
by accessing directly to the network configuration files of the Raspberry Pi2.

The first option, described below, is the fastest one. It allows, in fact, to immediately control
the Raspberry Pi2 board through the PC hosting MATLAB/Simulink once the OS is installed,
with no need to access the Raspberry Pi2 configurations with additional peripherals, such as
monitor, keyboard and mouse.

Coming back to the installation procedure, click Continue in the window shown in Fig.1.12
to start the OS installation.

When the window shown in Fig.1.13 appears, select Raspberry Pi (Simulink) and click Next.

The first thing to do is to choose the Raspberry Pi™ model. The procedure explained hereafter
is valid for all the Raspberry Pi™ models that can be selected, although in this document we will

G. Pasolini, A. Bazzi, M. Mirabella 10 Stmulink Defined Radio

Raspberry Pi2 - TLC

4. MathWaorks Account Log In -

Don't have an account? Create an account

Email address:

Password:

Keep me logged on

@ Forgot your password?

.

Figure 1.8: Mathworks Account Log In

proceed with the installation of the Raspberry Pi2 OS, as shown in Fig.1.14.

Clicking Nezt you will get to the window shown in Fig.1.15, regarding the configuration of
the network connection between the PC and the Raspberry Pi™. According to what has been
previously said, the choice will be Manually enter network settings, as shown in Fig.1.15. The
procedure detailed in the following will directly modify the Raspberry Pi2 system files containing
the network parameters. This ensures the immediate use of the hardware once the installation
is concluded, without further configurations.

The window shown in Fig.1.15 also requires to enter the Host name that identifies the device
being installed. As an example, we chose the Host name Raspberrypi-TLC1, but the choice
is absolutely arbitrary'.

In addition, an TP address must be manually selected. The choice of the TP address to be
assigned to the Raspberry Pi2 depends on the availability of free addresses within the local-area-
network (LAN): with the command PING #IPaddress, executed in the Windows command
interpreter CMD, it is possible to check the actual availability of an IP address. The procedure
here described adopts the configuration shown in Table 1.1.

IP ADDRESS 169.254.0.3
NETWORK MASK 255.255.0.0
DEFAULT GATEWAY | 169.254.0.1

Table 1.1: Choice of Raspberry Pi2’s network parameters

The final objective is to create a local network between the PC and the Raspberry Pi2. If a
network switch is available, more than one Raspberry Pi2 can be simultaneously controlled once
each device has been properly set up in terms of IP address. In the example given in the table

!The Host name assigned in this phase will be displayed in the prompt of the Raspberry Pi2 Linux Shell,
that will be described later. By default, MATLAB and Simulink will assign the device a predefined Host name,
corresponding to its IP address.

G. Pasolini, A. Bazzi, M. Mirabella 11 Stmulink Defined Radio

Raspberry Pi2 - TLC

T
ﬂ Support Package Installer @ Support Package Installer =8 ®
AUXILIARY LICENSE Third-party software licenses
You have chosen to install
IMFORTANT NOTICE MATLAB Support Package for Raspberry Pi Hardware
= = Simulink Support Package for Raspberry Pi Hardware.
READ THE TERMS AND CONDITIONS OF THIS MATHWORKS AUXILIARY SOFTWARE LICENSE AGREEMENT (THE | = hniervRciazepiiboisaiediopiel v inrig loztons)
"AGREEMENT") CAREFULLY BEFORE CHECKING "I ACCEFT" OR ACCESSING THESE MATERIALS (AS DEFINED
BELOW). MATLAB Support Package for Raspberry Fi Hardware 2
f Rospbian Wheezy http:/furveveraspbian.org/ license

THIS AGREEMENT REPRESENTS THE ENTIRE AGREEMENT BETWEEN YOU (THE "LICENSEE") AND THE chared comnonent for Suport Fackage nctaller bitpe/forivsmathwarke.com f— L
MATHVWORKS, INC. ("MATHWORKS") CONCERNING THE SOFTV/ARE AND DOCUMENTATION MADE AVAILABLE FOR P PP 9 P - - Heense F
ACCESS HEREUNDER (COLLECTIVELY, THE "MATERIALS").

simulink Support Package for Raspberry Pi Hardware
BY CHECKING "I ACCEPT" OR ACCESSING THESE MATERIALS, YOU ACCEPT THE TERMS OF THIS AGREEMENT. L http:/fuveibsdl.org Jicense

Shared component for Support Package Installer http:/fwevew. mathworks.com license -
1. DEFINITIONS.
1.1. "Licensee” means you, whether an indiidual or an entity, to whom MathWorks grants the License, and who is Tl utilty enalos you to downiond and insta the tird party softuard isted above. This st may contain open source
responsible for complying with the contractual obligations of the License, and ensuring that anyone permitted software, including software licensed under the terms of the General Public License.
access o the Materials also complies with such obligations.

By clicking "Install" on the next screen, you will be downloading and installing the software listed above.
1.2. "Documentation” means the user guides, if any, accompanying delivery of the Materials, as may be updated By clicking "Cancel®, you wil not download or install the software.
from time to tme, as well as any reports or other feedback that MathWorks may, In its sole discretion, provide to
Licensee. Documentation may be delivered in printed andor online forms, and in one or more languages.
1.3. "Licensor” means any person who, or entity which, grants a licanse to MathWorks to redistribute that person’s
or entity"s intellectual property.
1.4. "Materials" means the computer software delivered and licensed hereunder, including Documentation, -

[1accept
< Back Next > cancel | [el <Back || | [concel |[help

Figure 1.9: License agreement

Figure 1.10: Third-party software licenses

ﬂ Support Package Installer

Confirm installation

You have chosen to install

MATLAB Support Package for Raspberry Pi Hardware
simulink Support Package for Raspberry Pi Hardware

In C:\MATLAB\SupportPackages\R2015a.

<Back | [st][Gancel ||

Help

o Support Package Installer

=S

Install/ update complete

Select "Continue” to perform the setup tasks.

The following support packages have been successfully installed:
MATLAB Support Package for Raspberry Pi Hardware
Simulink Support Package for Raspberry Fi Hardware

The support package you installed requires additional setup tasks.

Continue > | [close | [help

Figure 1.11: Confirm installation

Figure 1.12: Install/update complete

G. Pasolini, A. Bazzi, M. Mirabella

12

Stmulink Defined Radio

Raspberry Pi2 - TLC

ﬂ Support Package Installer = | O] S

Set up support package
Choose a support package to start the setup process.

Support package for: | Raspberry Pi (Simulink) -

[vea> |[concel |[melp

Figure 1.13: Set up support package

£ Support Package Installer = =

Update firmware

The firmware update process for Raspberry Pi hardware consists of copying a
Raspbian Wheezy Linux firmware image onto @ memory card and booting the
Raspberry Pi board with this memory card. We will guide you through this process.
Select your board to get started.

Board: |Raspberry Pi 2Model B+

<Back || Mext> || cancel || Hep

Figure 1.14: Choice of the Raspberry Pi2 model

1.2, the addresses assigned to three Raspberry Pi2 have been reported. As can be noticed, the
network mask and the default gateway are the same.

Clicking Nezt in the window shown in Fig.1.15, the window depicted in Fig.1.16 appears,
which requires to insert the micro SD card (with the SD adapter, if necessary) in the appropriate
slot of the PC. Clicking Negzt, the window shown in Fig.1.17 is displayed, requesting a confir-
mation to write in the memory card. Clicking write the Raspberry Pi2’s OS installation finally

G. Pasolini, A. Bazzi, M. Mirabella 13 Stmulink Defined Radio

Raspberry Pi2 - TLC

o\, Support Package Installer — [m] x

Configure network

Choose your network configuration:
Network configuration
() Local area or home netwark
O Direct connection to host computer
(®) Manually enter network settings

Network settings

Host name: |raspberrypiTLC 1

IP Assignment
(O Automatically get IP address
(®) Manually enter IP address

IP address: | 169.254.0.3 |

Network mask: ‘ZSE.ZES‘D.D ‘

Default gateway: | 169.254.0.1 |

Figure 1.15: Network Configuration

Device IP ADDRESS | NETWORK MASK | DEFAULT GATEWAY
Raspberry - TLC2 | 169.254.0.4 255.255.0.0 169.254.0.1
Raspberry - TLC3 | 169.254.0.5 255.255.0.0 169.254.0.1
Raspberry - TLC4 | 169.254.0.6 255.255.0.0 169.254.0.1

Table 1.2: Choice of network parameters for several Raspberry Pi2

starts, with the adopted network settings, on the micro SD card (Fig.1.18). This step might
require some tens of minutes.

Once the operation is completed, the wizard suggests the steps to follow in order to connect
the Raspberry Pi2 to the PC (Fig.1.19). Before clicking Nezt, and proceeding with the next
step of the wizard, it is necessary can be necessary to install and set up an USB to Ethernet
converter, as explained in Section 1.5. The use of an USB to Ethernet converter is required any
time a Ethernet port is not available on the PC.

1.5 Installation and configuration of the USB to LAN converter

Communications between the PC and the Raspberry Pi2 take place through a network (Ethernet)
connection. This entails that a direct connection between them occupies the Ethernet port of the

G. Pasolini, A. Bazzi, M. Mirabella 14 Stmulink Defined Radio

Raspberry Pi2 - TLC

Select a drive

Inserta 4GB or larger MicroSD memory card into a memory card reader on the host computer,

Select the drive letter that corresponds to the memory card reader:

If you do not find the memory card reader in the list of drives, reinsert the memory card fully
and dick Refresh”,

Slide lock switch ~

up to unlocked
position

<Back || MNext> || cancel || hep

Figure 1.16: OS Installation

Write firmware

Write firmware
You chose to write o drive G:'. The write operation may take several minutes,

“You chose to write to drive 'H:'. The write operation may take several minutes.
P Y £\, WARNING: Alldata in the memory card wil be erased!

I\ WARNING: All data in the memory card will be erased!

4\ Wiiting firmware image to SD card.. = =

21% of 2125MB (3 min 36 seconds left)
—

< Back H Write H Cancel H Help <Back write Cancel Help

Figure 1.17: Write firmware Figure 1.18: Write firmware

PC, which could be prevented from connecting to the local network as well as to the Internet.
In order to connect the Raspberry Pi2 directly to the PC avoiding this problem, an USB 2.0 to
LAN converter can be used, like the one shown in Fig.1.20.

By using the converter, it is possible to create a local area network between the Raspberry
Pi2 and the PC, with no need to occupy its Ethernet port.

Once the driver of the device has been installed (a step that is not always needed and depends
from the specific device and PC OS), it is necessary to manually enter the TP address assigned to
the converter. The choice of the address must be consistent with the subnet mask and gateway
previously assigned to the Raspberry Pi2. To set the IP address, it is necessary to

e Connect the converter to an USB port of the PC;

G. Pasolini, A. Bazzi, M. Mirabella 15 Stmulink Defined Radio

Raspberry Pi2 - TLC

Connect the Raspberry Pi hardware

Instructions

| 1. Remove the memory card from the host
,,,,,,,,,,, — computer and insert into the Raspberry Fi hardware.

2. Connect an Ethernet cable to the board. Connect
the other end of the Ethernet cable to your network.
3. Connecta 5V micro USB power supply to the
board. The power supply should be rated for at
least 700 mA.

NOTE: You may connect optional peripherals such

as a monitar, keyboard, etc. at this time.

SD card

Make sure that the PWR' LED is solid red and
the 'OK/ACT LED indicating SD card activity
starts blinking. Then, dick Next' to continue.

Power cable

< Back Next > Cancel Help

Figure 1.19: Connect the Raspberry Pi"hardware

e

Figure 1.20: USB to LAN converter

e Access the network configuration window through Control Panel> Network and In-
ternet>Network Connections;

e Identify the network card to be configured (corresponding to the USB to LAN converter);

e Modify the TCP /IPv4 properties, as shown in Fig.1.21.

Fig.1.21 also shows example addresses for the configuration of the device.

1.6 Raspberry Pi2 Power On

Once the USB 2.0 to LAN converter has been configured, it is possible to test the proper func-
tioning of the system. After inserting the micro SD card with the OS in the Raspberry Pi2 slot
and after connecting the PC according to the scheme shown in Fig.1.22, the Raspberry Pi2 can
be powered on.

G. Pasolini, A. Bazzi, M. Mirabella 16 Stmulink Defined Radio

Raspberry Pi2 - TLC

1+ B+ Pannelle dicentrelle + Reteelmtemet + Connessioni di rete v &

[

RaspberryUSE
Rete non identificata

Crganiza »
™ Connessione di rete Bluetooth =/ Ethemet "!- Wi-Fi
Mon connesso Cavo di rete scollegato ALMAWIFI
b4 Dispositive Bluetooth (Personal A 36 @ Controller Gigabit Ethernet PCI-E - J Inted(R) Centrino(R) Adva

Scheda conversione

Generale

E possibile ottenere lassegnazione automatica delle impostazioni IF se la
rete supporta tale caratteristica. In caso contrario, sard necessaria
richiedere all'amministratore di rete le impostazioni IF corrette.

() Ottieni automaticamente un indirizzo IP

169 .25¢ . 0 . 2
255.255. 0 . 0
169 .25¢. 0 . 1

Ottieni indirizzo server DNS automaticamente

(@) Utilizza || seguente indirizzo IP:
Indirizzo IP:
Subnet mask:

Gateway predefinito:

(@) Utilizza | sequenti indirizzi server DNS:

Server DNS preferito:

4 elementi

Server DNS alternativo:

[] convalida impostazioni alluscdita

Condivisione:

Connetti tramite:
@ Scheda conversione da USE 2.0 a Fast Ethemet ASIX AXBE77:

La connessione utilizza gli elementi seguenti:

gCondi\risione file & stampanti per reti Microsoft A
[] -+ Protocollo Microsoft Network Adapter Muttiplexor

& Driver protocallo LLDP Microsoft

& Driver di 10 del mapping di individuazione topologia livelli ¢
-4 Risponditore individuazione topologia livelli di collegamento
=4 Protocollo Intemet versione & (TCP/1PvE)
P8 Protocollo Intemet versione 4 (TCP/IPvd)
L4

>
Descrizione

TCF/IP. Pratocollo predefinito perle WAMN che permette la
comunicazione tra diverse reti interconnesse.

Disinstalla

Figure 1.21: Configuration of the USB2.0 to LAN converter

USB 2.0

LAN Cable

Ethernet LAN

Figure 1.22: Connection scheme

G. Pasolini, A. Bazzi, M. Mirabella 17

Stmulink Defined Radio

Raspberry Pi2 - TLC

E Support Package Installer et

Connect the Raspberry Pi hardware
Instructions
1. Remave the memory card from the host
computer and insert into the Raspberry Pi hardware.

2. Connect an Ethernet cable to the board. Connect
the other end of the Ethernet cable to your netwark.
3. Connect a 5V micro USS power supply to the
board. The power supply should be rated for at
least 700 mA.

NOTE: fou may connect optional peripherals such
as a monitor, keyboard, etc. at this time.

Make sure that the PWR' LED is solid red and
the ‘Ol ACTIED card activity
. A Configuring network.. = & B 2 to contince.

Detecting Raspberry Pi (74 seconds left)...

Figure 1.23: Network parameters test

The power supply can be done either using an AC/DC converter with micro USB connector,
like those used for cell phones, or through a cable with USB-microUSB connectors, thus taking
the power directly from one of the USB ports of the PC.

Please be aware, however, that the first option can cause some problems due to the dis-
turbances generated by the AC/DC converter. The occurrence and entity of this phenomenon
depends on the quality of the AC/DC converter. In any case, for this reason the second option
might be preferred.

Once the Raspberry Pi2 is initialised, it is possible to test the connection between the device
and the PC. For this purpose it is necessary to continue the installation procedure previously
interrupted, by clicking Nezt in the window shown in Fig.1.19. The installation will continue with
the hardware research phase (Fig.1.23), leading to the window shown in Fig.1.24. By starting
the connection test (click Test connection) it is possible to have a confirmation of the successful
connection (Fig.1.25).

Clicking Nezt, the installation procedure is completed (Fig.1.26). From now on, it is possible
to interact with the Raspberry Pi2 directly within MATLAB, as explained below.

1.7 Controlling the Raspberry Pi2 through MATLAB

In order to test within MATLAB the connection between the PC and the Raspberry Pi2 and to
get information about host name, user name, password and active build directory 2, the command
below can be executed in the MATLAB command window:

2The build directory is the Raspberry Pi2 folder where all the files generated by MATLAB/Simulink are stored.

G. Pasolini, A. Bazzi, M. Mirabella 18 Stmulink Defined Radio

Raspberry Pi2 - TLC

Confirm board configuration

I you want to log in to the board in the future, the host name,
TP address, user name, and password are displayed below.

IP address: | 158.254.0.3 Test Cnechun

Host name: | raspberrypiTLCL

User name: p

Password: | raspberry
NOTE:

1. Your Raspberry Pi hardware will speak its IP address
through the analog audio connector when it boots.

2, You can configure your Raspberry Pi hardware to automatically
send an e-mail when IP address changes.

Click 'Help’ for detailed instructions.

<Back || meax || cand || hep

Figure 1.24: Confirm board configurations

‘Supporl Package Installer = 3] x|

o\ support Package Installer (= [[

Confirm board configuration Support package setup complete
T you want to log in to the board in the future, the host name, You have completed the setup tasks.
1P address, user name, and password are displayed below.

Show support package examples
1P address: [169.254.0.3 Test Connection

Host name: | raspberrypi-GP

User name: [pi

Password: [raspberry

NOTE:
1. Your Raspberry Fi hardware will speak its P address

through the analog audio connet
<\ Testing connection.. b)
2. You can configure your Raspbel

send an e-mail when IP address | COnnection successful...

Click "Help' for detailed instruction§

< Back Next Cancel Help

Figure 1.25: Connection successful Figure 1.26: Support package setup complete

raspberrypi

Listing 1.1: Get info from the Raspberry Pi™board

The result is shown in Fig.1.27. The default settings are:

e HostName: Raspberry Pi2’s IP address;

G. Pasolini, A. Bazzi, M. Mirabella 19 Stmulink Defined Radio

Raspberry Pi2 - TLC

Command Window

»>» raspberrvpil
ans =

LinoxServices with properties:

HostName: "169.254.0.3"
Userlame: '"pi'
Password: 'raspberry'
BuildDir: '/home/pi/’

fr o> |

Figure 1.27: Information about connected device

e UserName: pi;
e Password: raspberry;
e Build directory: /home/pi/.

Remaining in the MATLAB command window, it is possible to access the Raspberry Pi2
settings, directories, and files, by means of a Linux Shell. This is done through the following
commands:

h=raspberrypi (’169.254.0.37);
h.openShell (’ssh’)

Listing 1.2: MATLAB commands to open a Linux Shell

The function raspberrypi, invoked with the HostName (corresponding to the IP address) as
the only parameter, provides a handle “h” associated to the addressed device, that is used to
open the corresponding Shell with the command h.openShell.

As a result of the operation, the Shell opens requesting the UserName and the Password, as
shown in Fig.1.28. Entering UserName pi and Password raspberry you access the Raspberry
Pi2 Linux environment in the Build Directory /home/pi, as shown® in Fig.1.29. To exit the
Linux Shell enter the command exit.

If you want to access more than one Raspberry Pi2 connected to MATLAB, it is necessary
to create different handles, as shown in Listing:1.3. The Linux Shell can be invoked using the
corresponding handle.

hli=raspberrypi(’169.254.0.47);
h2=raspberrypi(’169.254.0.5%);

Listing 1.3: MATLAB commands to open more than one Linux Shell

*Note that the Linux prompt displays the Host name assigned to the device during the OS installation (Section
1.4). As previously said, this Host name is different from the one used by default by MATLAB, that corresponds
to the IP address assigned to the device.

G. Pasolini, A. Bazzi, M. Mirabella 20 Stmulink Defined Radio

Raspberry Pi2 - TLC

169.254.0.3 - PUTTY = =

Figure 1.28: Linux Shell

EP pi@raspberrypi-tlcl: ~ - O X
p poerryp

Figure 1.29: Linux environment

The whole installation procedure of a new Raspberry Pi2 can be performed within the MAT-
LAB command window by simply launching the command targetupdater:

targetupdater

Listing 1.4: MATLAB command for new configuration

The Raspberry Pi2’s network settings can be checked or modified using, within the Linux
Shell, the command:

sudo nano /etc/network/interfaces

Listing 1.5: Linux code to access the network settings

as shown in Fig.1.30, where sudo is the Linux command to obtain the rights of the superuser, and
nano is a text editor (obviously, any other text editor could be used as well). The Raspberry Pi2

G. Pasolini, A. Bazzi, M. Mirabella 21 Stmulink Defined Radio

Raspberry Pi2 - TLC

2 pi@raspberrypi2-TLC1: ~

Figure 1.30: Linux Shell. Network configuration

answers opening, in the text editor nano, the file containing the network configurations (Listing
1.6).

auto 1lo
iface lo inet loopback

auto ethO
iface ethO inet static
address 169.254.0.3

netmask 255.255.
gateway 169.254.

o O
= O

allow-hotplug wlanO

iface wlan0 inet manual

wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf
iface default inet dhcp

Listing 1.6: Network configuration file

Through the editor it is always possible to modify the Raspberry Pi2’s network parameters.

G. Pasolini, A. Bazzi, M. Mirabella 22 Stmulink Defined Radio

Chapter 2

Sound card configuration

Figure 2.1: 33051D USB sound card

In order to use the Raspberry Pi2 board as a digital signal processing device, an analog
input and an analog output are required. The Raspberry Pi2 is equipped with an analog output
(headphone output) but not with an analog input. To fill this gap, it is possible to use an
external USB sound card similar to the one shown in Fig.2.1, that supplies a microphone input
and one more headphones output. In particular, the sound card that we used is equipped with
the 33051D chipset.

This cheap device, connected to the Raspberry Pi2’s USB port, will thus play a double role:
analog-to-digital converter (ADC) for input signals and digital-to-analog converter (DAC) for
output signals.

Being the device conceived for audio signals, its sampling frequency is limited to 48000
samples per second, with a resolution of 16 bits per sample. It follows that, in principle, the
band of generated and received signals must be within the interval [0, 24 kHz|. In practice,
however, the highest frequency that can be reached is in the order of 20 kHz; when this threshold
is exceeded, in fact, a significant attenuation, that increases with the frequency, is introduced on
the signal.

Please observe that, although the Raspberry Pi2 is equipped with an integrated audio output
(headphones output), it is surely preferable to use the analog output provided by the external
sound card. The integrated DAC is, in fact, of poor quality, as can be easily understood observing
Fig.2.2: The yellow curve represents a 10 kHz sine generated by a Raspberry Pi2 and measured
at the integrated output, whereas the red curve represents the same signal measured at the sound
card output. The difference is evident, especially when the frequency increases (Fig.2.3).

23

Raspberry Pi2 - TLC

A
A e ARV
C, A . _

&

Measure P1:freqlC2) P2:ampl(c2) P3:freg(C1) P4:ampl(C2) PS--- PE:- - - PT:--- P&---
walueg 9.9768537 kHz 1.320 10600414 kHz 1.320%
mean 9.9977323 kHz 131855 10049618 kHz 1318535
min 99763537 kHz 1320 9.743591 kHz 1.320%
max 10025940 kHz 1320 10600414 kHz 1.320%
sdev 19500694 Hz --- 35093606 Hz -
1 4 1
kS v S

Figure 2.2: Comparison between the external DAC output and the Raspberry Pi2 headphones
output. 10 kHz sine wave

7T R A ST AV W ARY RN AT

BAAN Ll

AN BN AN RWA'NIE
VEWT LN

YRR N

&

=

Measure P1:freqiC2) P2:ampl(C2) P3:freq(C1) Pa:ampl(C2) PS--- PE:- - - PT--- P8---
walug 20009635 kHz 1318 22959477 kHz 1.318%
mean 19.993500 kHz 131807 v 20534315 kHE 131807
min 18.919699 kHz 1.318Y 16740744 kHz 1.318Y
max 20029268 kHz 1318 23.020258 kHz 1.318%
sdev 354935 H --- 26630467 kHz -
num g 1 g 1
status R R R R

Figure 2.3: Comparison between the external DAC output and the Raspberry Pi2 headphones
output. 20 kHz sine wave

G. Pasolini, A. Bazzi, M. Mirabella 24 Stmulink Defined Radio

Raspberry Pi2 - TLC

2.1 External sound card configuration

The external sound card configuration requires to modify some parameters of the Raspberry
Pi2’s sound drivers.

The first step is to set this card as the primary audio device. After connecting the sound
card to the Raspberry Pi2’s USB port, it is possible to check its presence as output device by
opening the Linux Shell (Section 1.7) and launching the command:

aplay -1

Listing 2.1: Linux command: aplay -1

=P pi@raspberrypi2-TLC1: ~

P

He e e e

Figure 2.4: Linux aplay -l command

As can be seen in Fig.2.4, showing the result of this operation, the primary audio device is
the bem2835 ALSA, that is, the internal DAC. This can be easily deduced by its Card parameter,
which is equal to 0.

The external DAC, labelled as USB Audio Device, has instead the Card parameter set at 1.

In order to reverse the priority of the two audio devices, it is necessary to modify the alsa-
base.conf file. For this purpose, open the file alsa-base.conf in the text editor nano of the Linux
Shell through the command

sudo nano /etc/modprobe.d/alsa-base.conf

Listing 2.2: Audio driver configuration

and add the new line (Listing:2.3),

G. Pasolini, A. Bazzi, M. Mirabella 25 Stmulink Defined Radio

Raspberry Pi2 - TLC

#Set to 0 to obtain the loading of the USB Sound Card as first
options snd-usb-audio index=0

Listing 2.3: Audio driver modification

as shown in Fig.2.5. Find, then, the line reported in Listing:2.4, that must be commented adding
the character “#” (Fig.2.5).

Keep snd-usb-audio from beeing loaded as first soundcard
options snd-usb-audio index=-2

Listing 2.4: Audio driver modification

GNU mano 2.2.6 File: /etc/modprobe.d/falsa-base.conf

Figure 2.5: File Alsa-Base.conf

For the change to be effective, it is necessary to restart the system through the reboot
command (Listing:2.5).

sudo reboot

Listing 2.5: Linux command: reboot

Once the system is restarted, you can verify that the external sound card is now the primary
audio player (Fig.2.6) by checking it through the command in Listing:2.1. Moreover, executing
the command in Listing:2.6 you will see that an audio acquisition (CAPTURE) device is also
present (Fig.2.6): It is the microphone input, made available by the USB sound card.

G. Pasolini, A. Bazzi, M. Mirabella 26 Stmulink Defined Radio

Raspberry Pi2 - TLC

o pi@raspberrypi2-TLC1: ~

I

M e A e

Ll e e
omu o

Figure 2.6: aplay and arecord outputs

arecord -1

Listing 2.6: Linux command: arecord -1

In order to simultaneously use both the input and the output, it is necessary to check the
corresponding sound levels (volumes) through the command in Listing:2.7.

alsamixer

Listing 2.7: Linux command: alsamizer

The alsamizer command opens the sound level configuration window (Fig.2.7): It is important
to notice that the microphone audio level is set at 0 by default. This means that no signal
acquisition can be carried out with the default setting. Of course it is possible to select the entry
to be modified by using the arrows in the keyboard and to raise or lower the level for the selected
audio device, for both input and output. With the function key F6 it is also possible to access
the settings of other sound cards possibly present.

G. Pasolini, A. Bazzi, M. Mirabella 27 Stmulink Defined Radio

pi@raspberrypi2-TLC1: ~

3

Speaker < >Auto Gain Control

(a) Microphone off

pi@raspberrypi2-TLC1: ~

io Dewvice

>Auto Gain Control

(b) Microphone on

Figure 2.7: Alsamixer

Chapter 3

The workstation

In the following chapters we will describe some didactic experiences concerning the Simulink
modelling and the subsequent hardware implementation of telecommunication systems and dig-
ital signal processing algorithms.

Apart from the Raspberry Pi2 board, such activities require a PC hosting MATLAB and
Simulink, as well as instruments for the generation and analysis of signals in the frequency and
time domains. The equipment includes also cables and adapters suitable for interconnecting the
Raspberry Pi2 to both the PC and the instruments.

The workstation setup and the equipment required will be discussed in the following sections.

3.1 Personal Computer

The experimental activities that will be presented in the following chapters require, first of all, a
PC equipped with MATLAB and Simulink. In particular, the experiences described below have
been realized with MATLAB R2015a equipped with the following libraries:

e Communications System Toolbox;
e DSP System Toolbox;

e Data Acquisition Toolbox;

29

Raspberry Pi2 - TLC

¢ Fixed-Point Designer;
e Instrument Control Toolbox;

e Signal Processing Toolbox.

3.2 The equipment

The experimental activities described in the following will result in the realization of systems
able, in general, to generate and process signals.

The system modelling stage, carried out using Simulink, and the Raspberry Pi2 implemen-
tation, will be thus followed by a signal measurement phase, aimed at verifying the correct
functioning of the system designed and to confirm, through experimental observations, the the-
oretical concepts concerning the implemented system.

The equipments required for the measurement campaign are typically available in every
didactic lab for electronics and telecommunications, with particular reference to:

e Signal generator. It is the classic device used to generate signals with user-defined
characteristics. In its simplest versions it can generate periodic signals (sine waves, square
pulse trains, ...) and particular aperiodic signals (Gaussian noise, single square pulse, ...).
It will be mostly used as a sine wave generator, in order to provide the carrier needed
by some of the implemented transmitters, or the input signal to test the digital filtering
systems.

Figure 3.1: Signal generator

e Oscilloscope. In the majority of cases, the observation of signals will focus on their
behaviour in the time domain. This task is performed through an oscilloscope, that will
be employed in most of the experimental activities described below.

e Spectrum analyser. To investigate the spectrum of a signal it is necessary to perform a
frequency domain analysis. The tool required for this kind of investigation is the spectrum
analyzer, which is able to display the power distribution of a signal along the frequency
axis.

It is worth noting that the signals that will be generated /processed by our systems are within
the [0 24 kHz| band, owing to the characteristics of the ADC/DAC described in Chapter 2. For
the generation or analysis of such signals there is no need for sophisticated instruments; thus, the
basic instruments typically available in a didactic lab are normally sufficient for the experimental
activities described below.

G. Pasolini, A. Bazzi, M. Mirabella 30 Stmulink Defined Radio

Raspberry Pi2 - TLC

Tektronix TDS 2024C L5 = MDWQM I@ @ Q_@ B
s - G m .

Figure 3.3: Spectrum analyser

Nonetheless, even basic oscilloscopes and spectrum analysers are costly devices for students
or hobbyists. Apparently, therefore, the experiences here presented cannot be performed “at
home”, where lab instruments are usually not available.

Indeed, this is not true. Recently, low cost, multi-purpose instruments have been conceived
for low frequency applications. On this regard the Digilent Analog Discovery device, shown in
Fig.3.4 is worth special attention.

Figure 3.4: Digilent Analog Discovery

When connected to the PC through the USB port, this device is able to generate and acquire
signals. With a moderate price, in the order of 270%, this tool can operate as signal generator,
oscilloscope, spectrum analyser, network analyser, logic state analyser, digital signal generator

G. Pasolini, A. Bazzi, M. Mirabella 31 Stmulink Defined Radio

Raspberry Pi2 - TLC

and power supply. The user interface of each single instrument, displayed on the PC’s monitor,
shows the same knobs, sliders and buttons of the “full hardware” instrument, allowing the user
to perform the measurement activity as he was in a lab.

Of course, the upper limit of the bandwidth that can be handled by the Digilent Analog
Discovery, in the order of some MHz, cannot be compared with that of more sophisticated and
expensive instruments, however it is more than adequate for the didactic experiences described
below. In this case, therefore, the signal generator, the oscilloscope and the spectrum analyser
can be conveniently replaced by this multifunction tool.

3.3 The workstation

The experimental activities described in the following chapters require a PC hosting MAT-
LAB/Simulink, a Raspberry Pi2 model B (Fig.3.5(a)), the instruments described in the previous
section, and the following items:

eNr.1 USB-micro USB cable (Fig.3.5(b)) oNr.1 External sound card (Fig.3.5(f))
eNr.1 micro SD memory card (Fig.3.5(c)) eNr.1 USB-LAN adapter (Fig.3.5(g))
eNr.1 Network cable (Fig.3.5(d)) oNr.2 BNC-RCA adapters (Fig.3.5(h))
oN1.2 3.5mm-RCA jack cables (Fig.3.5(e))

(a) Raspberry Pi2 (b) USB-micro USB (c¢) Micro SD memory (d) LAN cable
cable card

N
N
, e Oy
(e) Stereo 3.5mm- () External (g) USB to LAN (h) RCA-BNC
RCA jack cable sound card adapter adapter

Figure 3.5: Equipment
e USB-micro USB cable. It is used to connect the Raspberry Pi2 to the PC’s USB port,
with the only aim to provide the power supply.

e Micro SD memory card. It contains the Raspberry Pi2 operating system, whose instal-
lation procedure is described in Chapter 1.

G. Pasolini, A. Bazzi, M. Mirabella 32 Stmulink Defined Radio

Raspberry Pi2 - TLC

e Network cable. It is used to connect the Raspberry Pi2 with the USB to LAN adapter
(Fig.3.5(g)), as described in Chapter 1.

e 3.5mm-RCA jack cables. They are used to connect the sound card, equipped with 3.5
mm female jacks (Fig.3.5(f)), to the instruments. RCA-BNC adapter (Fig.3.5(h)) are also
needed.

e External sound card. It is used to provide the Raspberry Pi2 with an analog input (mi-
crophone input), otherwise absent, and with a second analog output (headphones output).
See Chapter 2 for further details.

e USB to LAN adapter. It can be used to connect the Raspberry Pi2 with the PC,
providing an interface between the Raspberry Pi2 ethernet port and the PC’s USB port.
See Chapter 1 for further details.

e RCA-BNC adapter. It is used to connect the 3.5mm-RCA jack cable to the instruments,
usually equipped with BNC connectors (Fig.3.5(e)).

Fig.3.6 shows an example of workstation setup.

Waveform Generator

Raspberry Pi2

USB Audio Card

Oscilloscope

3.5mm Jack Z _
audio - 2 RCA ~
%7

RCA-BNC Connector

Figure 3.6: Example of workstation

G. Pasolini, A. Bazzi, M. Mirabella 33 Stmulink Defined Radio

Chapter 4

Raspberry Pi2 as a signal generator

In this chapter we present the first example of Simulink project conceived to be implemented
on a Raspberry Pi2 board. The project, a sine wave generator, is intentionally simple, in order
to focus the attention on the steps for its compilation and hardware implementation. Indeed,
this project is basically a pretext to show how to generate the executable of a Simulink project
and launch its execution on Raspberry Pi2 boards.

Once these procedures become familiar, the complexity of the projects will gradually increase,
until getting to the implementation of the OFDM transmitter described in the last chapter.

4.1 Equipment required for this experience

The experimental activity described in this chapter requires an oscilloscope and the following
equipment:

eNr.1 Raspberry Pi2 (Fig.4.1(a)) eNr.1 USB-micro USB cable (Fig.4.1(b))
oeNr.1 Micro SD memory card (Fig.4.1(c)) eNr.1 USB-LAN adapter (Fig.4.1(d))
eNr.1 Network cable (Fig.4.1(e)) eNr.1 External sound card (Fig.4.1(f))

oNr.1 3.5mm-RCA jack cable (Fig.4.1(g)) eNr.1 BNC-RCA adapter (Fig.4.1(h))

35

Raspberry Pi2 - TLC

-:“-\7:‘“:.‘_ : ’ I‘*_,
(a) Raspberry Pi2 (b) USB-micro USB (c¢) Micro SD memory (d) USB to LAN

cable card adapter

N
(e) LAN cable (f) External (2) 3.5mm-RCA (h) RCA-BNC
sound card stereo jack cable adapter
Figure 4.1: Equipment
4.2 Raspberry Pi2 as a sine wave signal generator
Sine Wave Raspberry Pi output
555 ‘ RA:PEIFRRYPI
| Convert »> 3)
; o5 | -
: Data Type C ion1 -
Sine Waver @ P eneEen connx ALSA Audio Playback
Caontrol LED
RASPBERRYPI
et
J—m > Convert .
Pulse Data Type Conversion2 led0 (Green)
Generator1 LEDA

Figure 4.2: Simulink project of the sine wave signal generator

The first experimental activity proposed is aimed at modelling and implementing on a Rasp-
berry Pi2 board a sine wave signal generator with configurable amplitude, frequency and phase
offset. The corresponding Simulink model is shown in Fig.4.2, whereas Fig.4.3 shows the inter-
connection of the different devices composing the workstation.

In order to be as clear as possible, the scheme in Fig.4.2 highlights three macroblocks, called
Sine Wave, Raspberry Pi output and Conirol LED, corresponding to three different tasks,
associated to the objective of the project (Sine Wave macroblock), to the output manage-
ment (Raspberry Pi output macroblock) and to the execution monitoring (Control LED

G. Pasolini, A. Bazzi, M. Mirabella 36 Stmulink Defined Radio

Raspberry Pi2 - TLC

Raspberry Pi2 USB Audio Card

Oscilloscope
3.5mm Jack
audio - 2 RCA

‘ Ve
&@- RCA-BNC Connector

~ ~ USB Cable

Figure 4.3: Connection scheme

macroblock), respectively.

The task of each macroblock is described below, whereas the detailed description of the
elementary blocks that constitute each macroblock is reported in Section 4.3.

Sine Wave

T DSP

Sine Wave1

Figure 4.4: Sine Wave macroblock

4.2.1 Sine Wave macroblock

The Sine Wawve macroblock, shown in Fig.4.4 and described in detail in Section 4.3.1, is con-
stituted by a single elementary block, hence, strictly speaking, it should not be considered a
macroblock. It is, however, the project’s core, because it is in charge of generating the sam-
ples of a sine wave with configurable amplitude, frequency and phase offset. This block alone,
therefore, accomplishes the project’s objective, thus deserving the “macroblock” title.

G. Pasolini, A. Bazzi, M. Mirabella 37 Stmulink Defined Radio

Raspberry Pi2 - TLC

Raspberry Pi output

RASPBERRYPI
p Convert {: g ‘)‘D
Data Type Conversion Matrix
Concatenate ALSA Audio Playback

Figure 4.5: Raspberry Pi2 output system

4.2.2 Raspberry Pi output macroblock

The Raspberry Pi output macroblock, shown in Fig.4.5, represents the Raspberry Pi2’s analog
output. This macroblock has the function to adapt the signal at its input port to the format
required by the Raspberry Pi2’s output port, represented by the ALSA Audio Playback block.
Such macroblock has, thus, a general nature and appears in all (or almost all) the projects
described below.

The functioning and the configuration of the elementary blocks Data Type Conversion,
Matriz Concatenate and ALSA Audio Playback are detailed in Sections 4.3.2, 4.3.3, and
4.3.4.

Control LED
RASPBERRYPI
T o
| ” » Convert —
Pulse Data Type Conversion?2 led0 (Green)
Generator LED1

Figure 4.6: Control LED macroblock

4.2.3 Control LED macroblock

The only aim of the Control LED macroblock, shown in Fig.4.6, is to intermittently turn on
and off the Raspberry Pi2’s led during the project execution, visually confirming the that the
project is running.

This macroblock is not strictly part of the actual sine wave generator (Sine Wave+ Raspberry
Pi output), to which, in fact, is not even connected. It is a general macroblock and will appear
in all the projects described below.

The introduction of this macroblock, operating in parallel with the previously described ones,
also shows that the Raspberry Pi2 can simultaneously accomplish different tasks and handle
different outputs.

G. Pasolini, A. Bazzi, M. Mirabella 38 Stmulink Defined Radio

Raspberry Pi2 - TLC

The functioning and the configuration of the Pulse Generator, Data Type Conversion
and LED elementary blocks are described in Sections 4.3.5, 4.3.2 and 4.3.6.

4.3 Elementary blocks used

The list of the elementary blocks used for realizing the project is provided hereafter, along with
the reference to the sections in which their functioning is described.

eSine Wave (Section 4.3.1) e ALSA Audio Playback (Section 4.3.4)
eData Type Conversion (Section 4.3.2) ePulse Generator (Section 4.3.5)
e Matriz Concatenate (Section 4.3.3) eLED (Section 4.3.6)

4.3.1 Sine Wave

") Source Block Parameters: Sine Wave “
Sine Wave (mask) (link)

Output samples of a sinusoid. To generate more than one sinusoid
simultaneously, enter a vector of values for the Amplitude, Frequency, and
Phase offset parameters.

Main Data Types

Amplitude:
2~1541 |

Frequency (Hz):
20000 |

Phase offset (rad):
0 |

Sample mode: |Discrete v|
Output complexity: |Rea| v|
Computation method: |Trig0n0metric fen v|
Sample time:

[1/48000 |

Samples per frame:

[1024 |
Resetting states when re-enabled: |Restar‘t at time zero < |
") | 0K | | Cancel | | Help | Apply

Figure 4.7: Configuration window of the Sine Wawve block

The Sine Wawve block generates at its output port a sampled sine wave, whose samples are
taken at instants spaced out according to the quantity defined in the Sample Time field (see the
block’s configuration window shown in Fig.4.7).

Since the maximum sampling frequency supported by the external sound card adopted in our
projects (see chapter 2) is 48000 samples/s, we chose Sample Time=1/48000 s. This obviously
establishes a limit to the highest frequency of the sine wave that can be generated, that must
not exceed the theoretic limit of 24 kHz nor the practical limit of 20 kHz.

G. Pasolini, A. Bazzi, M. Mirabella 39 Stmulink Defined Radio

Raspberry Pi2 - TLC

The sine wave generated by the Sine Wawve block can be properly set up by choosing the
values of the corresponding parameters.

The first entry required by the block’s configuration window, shown in Fig.4.7, is the ampli-
tude, that must be entered in the Amplitude field. When choosing this value, it is necessary to
bear in mind that the signal dynamic range is limited by the 16-bit representation established
by the ALSA Audio Playback block (sect.4.3.4), that operates with data in the int16 format.
The highest value that can be assigned, then, will be equal to 2'® — 1, corresponding to the
highest integer value that can be represented with 15 bits + 1 sign bit.

The second and the third fields refer to the signal frequency, set as an example at 20000 Hz
in the Frequency field, and the phase offset, set at 0 in the Phase offset field.

The Sample Mode field keeps the default value Discrete, that determines the generation of
discrete-time samples.

The Qutput Complexity field, set at Real, produces a real output, as an alternative to a
complex exponential output.

The Computation Method field, determining which method must be used to generate the sine
wave, maintains the default Trigonometric fnc setting.

The Sample per frame field defines the frame length, that is the number of samples grouped
to be transmitted at each step to the following block. In order to increase the efficiency, in fact,
the Raspberry Pi2 board (and in general all embedded systems) operates on blocks of data (the
frames) rather than on a single datum at a time. For this particular project the field frame is
set at 1024.

The last parameter that is possible to set is called Resetting States when re-enable. By setting
it at Restart ot time zero, the block starts again with the initial settings in the event of a reset
(this choice is only significant if the block is provided with an “enable” input, not present in this
project).

4.3.2 Data Type Conversion

The Data Type Conversion block converts an input signal of any Simulink data type to the
data type specified in its configuration window.

For the project here considered, in particular, the ALSA Audio Playback block specifically
requires input data in the int16 format (16-bit signed integer). The data type conversion from
Real data, supplied by the Sine Wawve block, into int16 data is performed by the Data Type
Conversionl block (in the Raspberry Pi output macroblock) by setting the Inherit: Inherit
via back propagation mode in the Ouiput data type field, as shown in Fig.4.8. In this way the
Data Type Conversionl block automatically adapts the output data type to the requirements
of the downstream stages.

In the same way, the Data Type Conversion2 block (in the Control LED macroblock),
set as Inherit: Inherit via back propagation, converts the signal produced by the Pulse Gener-
ator block into the boolean format required by the LED block.

4.3.3 DMatrix Cancatenate

The Matriz Concatenate block concatenates multiple signals in a single output signal. The
output signal can be either a vector or a multidimensional array.

In the project here considered, this block is used in multidimensional mode, in order to
produce a two-channel output signal (that is, a stereo signal), starting from the two mono signals

G. Pasolini, A. Bazzi, M. Mirabella 40 Stmulink Defined Radio

Raspberry Pi2 - TLC

Data Type Conversion

Convert the input to the data type and scaling of the output.

The conversion has two possible goals. One goal is to have the Real World
Values of the input and the output be equal. The other goal is to have the
Stored Integer Values of the input and the output be equal. Overflows and
quantization errors can prevent the goal from being fully achieved.

Parameters
Output minimum: Qutput maximums:

| o

Output data type: | Inherit: Inherit via back propagation v| | ==

[[] Lock output data type setting against changes by the fixed-point tools

Input and output to have equal: |Rea| World Value (RWV)

Integer rounding mode: |Floor

[[] saturate on integer overflow

0K || Cancel || Help | Apply

Concatenate

Concatenate input signals of the same data type to create a contiguous
output signal. Select vector or multidimensional array mode.

In vector mode, all input signals must be either vectors or one-row [1xM]
matrices or one-column [Mx1] matrices or a combination of vectors and
either one-row matrices or one-column matrices. The output is a vector if
all inputs are vectors. The output is a one-row or one-column matrix if any
of the inputs are one-row or one-column matrices, respectively.

In multidimensional mode, use 'Concatenate dimension' to specify the
output dimension along which to concatenate the input arrays. For
example, to concatenate the input arrays vertically or horizontally, specify 1
or 2, respectively, as the concatenate dimensions.

Parameters
Number of inputs:

E

Mode: |Multidimensional array

Concatenate dimension:

|2

Q || Cancel || Help | Apply

Figure 4.9: Configuration window of the Matriz Concatenate block

at its input. This operation is needed as the ALSA Awudio Playback block, that follows the
Matriz Concatenate block, requires a stereo input signal. For this reason, the Number of
inputs field of the block’s configuration window must be set at 2. The same for the Concatenate
Dimension field (see Fig.4.9).

G. Pasolini, A. Bazzi, M. Mirabella 41 Stmulink Defined Radio

Raspberry Pi2 - TLC

As aresult, the two signals (the one identical to the other), at the input of the block, organized
in frames of 1024 values, are concatenated and transferred to the output in the form of a single
signal of dimension [1024x2]|, which is intended by the following ALSA Audio Playback block
as a stereo signal (with two identical channels).

4.3.4 ALSA Audio Playback

") Sink Block Parameters: ALSA Audio Playback H
ALSA Audio Playback (mask) (link)

Sends audio to the sound card for playback using ALSA driver
framework. The dimensions of the block input are [Nx2], where N is
the number of samples per frame, and 2 is the number of audio
channels. The data type of the block input must be int16. Use the
Audio sampling frequency parameter to set the sampling rate in Hertz
(Hz).

Parameters

Device name:

'plughw:0,0

Audio sampling frequency (Hz): |48000 -

Cancel Help Apply

Figure 4.10: Configuration window of the ALSA Audio Playback block

The ALSA Audio Playback block represents the Raspberry Pi2’s analog output. Its task
is to perform the digital-to-analog conversion of the signal and send it to the sound card for
playback. This block relies on the Raspberry Pi2’s ALSA audio driver, that manages all audio
devices connected to the Raspberry Pi2, including the USB sound card previously described.

The input signal must have a dimension of [Nx2|, where N is the number of samples in each
frame and 2 is the number of audio channels (in this specific case N=1024). Each sample must
be represented in the int16 format.

With reference to the configuration window shown in Fig.4.10, the sampling rate is selected
in the Audio sampling frequency field. In this model, and in all the following ones, a sampling
rate of 48000 samples/s was used, corresponding to the highest possible value.

The sound card’s identifier must be entered in the Device Name field: The input is defined by
the syntax ’plughw:card,device’, where the two parameters card and device can be easily obtained
by using the aplay -1 command in a Linux Shell (sect.2.1). The result will be an on-screen list
of all the devices connected to the Raspberry Pi2 and their corresponding parameters card and
device.

If the configuration of the sound card described in chapter 2 is properly performed, the Device
Name field will always have the form “plughw:0,0’.

G. Pasolini, A. Bazzi, M. Mirabella 42 Stmulink Defined Radio

Raspberry Pi2 - TLC

4.3.5 Pulse Generator

The Pulse Generator block generates square wave pulses at regular intervals, that can be set
through the configuration window shown in Fig.4.11.

f ~
"4 Source Block Parameters: Pulse Generator S

Pulse Generator -

Output pulses:

if (t == PhaseDelay) && Pulse is on
Y(t) = Amplitude

else
Y(t) =0

end

Pulse type determines the computational technique used.
Time-based is recommended for use with a variable step solver, while

Sample-based is recommended for use with a fixed step solver or
within a discrete portion of a model using a variable step solver.

Parameters

Pulse type: |Time based v| =
Time (t): |Use simulation time v|
Amplitude:

2*15-1

Period (secs):

0.5

Pulse Width (% of period):
10

Phase delay (secs):

0

¥| Interpret vector parameters as 1-D

J [0K]| Cancel || Help | Apply

Figure 4.11: Configuration window for the Pulse Generator block

The only relevant parameters for this block are the Amplitude, set at its highest possible
value 2'° — 1, the repetition Period, set at 0.5 s, and the Pulse Width, set at 10%. The remaining
fields are completed with default settings.

This signal is used to turn on and off the Raspberry Pi2’s LED when the project is running.

4.3.6 LED

The LED block is part of the Simulink library containing specific blocks for Raspberry Pi boards.
Its task is to turn on or off the user-controllable LED provided by the Raspberry Pi2 hardware.
The corresponding configuration window is shown in Fig.4.12.

The only fields of interest are those concerning the choice of the Raspberry Pi model used,
defined in the Board field, and the LED to be controlled, through the LED field. The proper
settings are shown in Fig.4.12.

G. Pasolini, A. Bazzi, M. Mirabella 43 Stmulink Defined Radio

Raspberry Pi2 - TLC

7~

*& Sink Block Parameters: LED

S

LED Write (mask)

Turns an LED on or off.

same LED in multiple blocks within a model.

Select the desired LED from the drop-down menu. Do not use the

Parameters
Board: [Fi 2 Model B + | [iew LED location
LED: [Iedu (Green) v]

[OK H Cancel H Help

Apply

A

Figure 4.12: Configuration window of the LED block

4.4 Settings for the hardware execution of the project

Once the Simulink project has been realized and tested through simulations, the Raspberry Pi2
can step in. In order for the project to be implemented on the hardware, it is essential to provide
Simulink with the necessary information to identify the Raspberry Pi2 in which to download the

executable file.

Within the Simulink environment select the tools/run on target hardware/options menu,
as shown in Fig.4.13, in order to select the target hardware. In this case the choice is, obviously,

“Raspberry Pi” (Fig.4.14).

T — = = = SEE. = T

file Edit View Display Diagram Simuiation Analysis Code [Tools] Help

®-® Ho-@-@- [w 8

Raspberry Pi2 Model B

TeleCommunication Experience

Sine Wave Raspberry Pi output

i g { o

Sine Wave !

a
e ALSA Audeo Playback

Pus DafaType Conversion
Generator! LEDT

Figure 4.13: Prepare to run

T o o =

In the following window (Fig.4.15) you are required to enter the parameters concerning Host

Name, User Name, Password, Build directory.

If the default configuration is unchanged, the parameters will be those used during the OS
installation phase, shown in Fig.1.27. Otherwise, the specific parameters chosen during the OS

G. Pasolini, A. Bazzi, M. Mirabella 44

Stmulink Defined Radio

Raspberry Pi2 - TLC

Select:

Solver

Data Import/Export
Optimization

Diagnostics

Hardware Implementation
Model Referencing
Simulation Target

Code Generation

Run on Target Hardware

@ Configuration Parameters: untitled/Run on Hardware Configuration (Active)

Set the 'Target hardware' parameter to match your target hardware.

If your target hardware is not listed in the "Target hardware' options, install the support package for your target hardware.

To install the support package, click 'Tools', click 'Run on Target Hardware', and click 'Install/Update Support Package...'.

Target hardware selection

Target hardware: |None

None

Arduino Esplora

Arduino Fio

Arduino Leonardo

Arduino LilyPad USB
Arduino Mega 2560
Arduino Mega ADK
Arduino Micro

Arduino Mini

Arduino Nano 3.0

Arduino Pro

Arduino Robot Control Board
Arduino Robot Motor Board
Arduino Uno

Arduino Due

Raspberry Pi
Get mare...

Cancel Help Apply

Figure 4.14: Target hardware setting

installation phase must be used.

Select:

Solver

Data Import/Export
Optimization

Diagnostics

Hardware Implementation
Model Referencing
Simulation Target

Code Generation

Run on Target Hardware

v v

v v

Target hardware selection

Target hardware: | Raspberry Pi
Signal monitoring and parameter tuning
TCP/IP port (1024-65535): |17725

Overrun detection

[Enable overrun detection

Board information

Host name: 169.254.0.3|
User name: pi
Password: raspberry

Build directory: | /home/pi

OK

Cancel Help Apply

Figure 4.15: Configuration parameters

It is possible to set just one Raspberry Pi2 at a time, even in the event of more than one
device connected to the PC through a network switch. Each Raspberry Pi2 will be unambiguously
identified through its Host Name.

The Enable overrun detection is a functionality that can be activated at the user’s discretion.

G. Pasolini, A. Bazzi, M. Mirabella 45

Stmulink Defined Radio

Raspberry Pi2 - TLC

With its activation, it is possible to monitor the occurrence of possible situations in which the
Raspberry Pi2 execution does not respect the timing required by the project.

Once Simulink has been properly configured to interact with the target Raspberry Pi2, it is
possible to compile the project, generating the executable, and perform the Deploy to Hard-
ware step (Fig.4.16). In order to successfully complete this operation, the user must have the
writing rights on the Matlab current folder.

The project will be automatically executed as soon as the deploy procedure is completed.

igram Simulation Analysis Code Tools Help

ig @ M T IL’) @ ~ |inf External -

iy Deploy to Hardware Ctrl+B

__-—-"‘-../I' M

Raspberry Pi2 Model B

TeLeCommunication Experience

RASPBERRYPI

H'HD:’J'] o Conver {@ y o)

Data Type Conversion

Matrix
Concatenate

Sine Wave -
ALSA Audio Playback

Figure 4.16: Deploy To hardware
It is now possible to observe the sine wave generated by the Raspberry Pi2 through an

oscilloscope connected to the sound card output, as shown in Fig.4.3. The expected result is
shown in Fig.4.17, representing an example of actual measurement performed in our lab.

Detailed information about the different ways to start and stop the execution of a Simulink
project on a Raspberry Pi2 board is given in the following section.
4.5 Hardware execution of the project
Any Simulink project already loaded on the hardware, through the previously described “ Deploy
to Hardware” procedure, can be executed independently from Simulink. The executable file is
saved in the Build Directory of the the micro SD memory card. Generally speaking, there are
three different modes to launch the execution of a project on a Raspberry Pi2:

1. Launching the execution within Simulink.

2. Launching the execution with Matlab commands.

3. Launching the execution with Linux commands.

Each mode is described in the following sections.

G. Pasolini, A. Bazzi, M. Mirabella 46 Stmulink Defined Radio

Raspberry Pi2 - TLC

A
Measure P1:freqlC2) P2:ampl(c2) P3:freg(C1) P4:ampl(C2) PS--- PE:- - - PT:--- P&---
walueg 19.961943 kHz 22308V 7.3972 MHz 22308 %
mean 19.957100 kHz 2.269000 % 519351 MHz 2.269000 %
min 19.845086 kHz 14787 Y 35 kHz 14787 Y
max 20156142 kHz 24E2V 32592 MHz 24162
sdev 4223921 Hz 88147 mv 5.330938 MHz 88147 mi
num 3.867e+3 1.930e+3 1.995049e+6 1.930e+3
status 4 4 A 4

Figure 4.18: Linux command “top”

4.5.1 Launching the execution within Simulink

The hardware execution of a project can be launched directly from Simulink, by means of the
“Deploy to Hardware” (Fig.4.16) procedure or using the “ Fxternal Mode” simulation setting.

e Deploy to Hardware: with the previously described Deploy to Hardware procedure, the

G. Pasolini, A. Bazzi, M. Mirabella 47 Stmulink Defined Radio

Raspberry Pi2 - TLC

executable is automatically launched as soon as the project compilation is completed.

Please note that the Deploy to Hardware procedure saves the executable and its auxiliary
files on the Raspberry Pi2’s memory card. This step is essential if you want to run the
project later through Matlab or Linux commands, as they require the executable file to be
already in the Raspberry Pi2’s memory card.

It si important to underline, moreover, that the “deploy to hardware” mode deactivates the
connection between the Raspberry Pi2 and the Simulink environment, making it impossible
to stop the project within Simulink.

In order to stop the execution it is necessary to open a Linux Shell (Section 1.7), identify
the running process to be stopped and force its termination, as described below.

First of all, a list of the processes running on the device must be obtained using the top
command (Listing 4.1) within the Linux Shell', as shown in Fig.4.18:

top

Listing 4.1: List of running processes

Once the PID code associated to the process to be stopped, for example “SineWave”, is
found, the “top” window can be closed pressing the g key. The process can now be stopped
using the kill command (Listing 4.2).

sudo kill PID

Listing 4.2: List of running programs

The second possibility offered by Simulink to run a project on a Raspberry Pi2 is the Ezxternal
mode.

e External mode: the execution is activated setting the Ezternal mode, as shown in
Fig.4.19, and starting the Simulink simulation as usual, clicking Run (Fig.4.20).

Contrary to the previous case, the “External Mode” keeps active the connection between
Simulink and the Raspberry Pi2,; allowing to stop the execution with the Stop button, as
shown in Fig.4.21. In this case, however, the executable and the auxiliary files needed for
a later execution outside Simulink will not be saved on the Raspberry Pi2’s memory card.

This mode is particularly appropriate during the design phase of the project. During the
Ezternal Mode execution, in fact, it is possible to change the project’s parameters (e.g.,
the sine’s amplitude) and to observe their effects in real time.

Please observe, however, that the execution in External Mode implies a greater computa-
tional burden for the Raspberry Pi2 compared to the execution activated by the Deploy
to Hardware procedure. This is due to the continuous information exchange between the
hardware and Simulink during the Ezrternal Mode execution.

!Please note, by the way, that the top command provides also the computational burden %CPU of each
process.

G. Pasolini, A. Bazzi, M. Mirabella 48 Stmulink Defined Radio

Raspberry Pi2 - TLC

mulaticn Analysis

+id

| |Externa| (g ™

Figure 4.19: External Mode activation

am Simulation Analysis Code Tools Help

Figure 4.20: Project execution in Ezternal Mode

am Simulation Analysis Code Tools Help

vv @ m"’ inf

Figure 4.21: Project stop in Ezternal Mode

4.5.2 Launching the execution with Matlab commands

In order to launch the hardware execution of a project using Matlab commands, it is necessary
to create the “raspberrypi” object “h” as shown? in Listing 4.3, and to invoke the command
run, entering as input parameter the name of the project to be launched (Listing 4.4).

h=raspberrypi (’169.254.0.37);

Listing 4.3: Matlab command to create a raspberrypi object

run(h, ’project name’)

Listing 4.4: Matlab command to execute a project on a Raspberry Pi2

2Here the raspberrypi command is used with HostName as the only parameter. Note that, as recalled in
Section 1.7, Matlab assumes by default that HostName is equal to the IP address assigned to the device. The
parameters UserName, Password and BuildDir are assumed at their default settings.

G. Pasolini, A. Bazzi, M. Mirabella 49 Stmulink Defined Radio

Raspberry Pi2 - TLC

If the executable is not saved in the default BuildDir it is necessary to run the extended
command “h=raspberrypi(...)" in Listing 4.5, specifying the new BuildDsr. 1t is now possible
to launch the command run (Listing 4.4).

h=raspberrypi (’HostName’,’UserName’,’Password’,’BuildDir’) $%new object for
device raspberry pi

Listing 4.5: Matlab command to create a raspberrypt object

The project execution can be stopped at any time, using the command:

stop(h, ’project name’)

Listing 4.6: Matlab command to stop the execution

4.5.3 Launching the execution with Linux commands

Any executable saved into the Raspberry Pi2’s memory card cab be launched by means of the
Linux Shell. The first step is to open the Linux Shell with the MATLAB commands:

h=raspberrypi ("HostName") ;
h.openShell (’ssh’)

Listing 4.7: Opening a Linux Shell within MATLAB

Then the BuildDir of the project must be selected using the Linux command:

cd "BuildDir"

Listing 4.8: Opening the “BuildDir”

The project execution is finally launched with the Linux command

sudo ./"project name_rtt"/MW/"project name"

Listing 4.9: Project execution

For the experience here described, we chose a BuildDir different from the default one, as
shown in Fig.4.22. In this case, in fact, the BuildDir is /home/pi/Sin.

Coming back to the Linux Shell it is possible to access and display the BuildDir’s content
launching the commands (see Fig.4.23)

cd Sin
dir

Listing 4.10: Entering the BuildDir

To run the project, it is enough to launch the command in Listing 4.11

G. Pasolini, A. Bazzi, M. Mirabella 20 Stmulink Defined Radio

Raspberry Pi2 - TLC

Select:

Solver

Data Import/Export
Optimization

Diagnostics

Hardware Implementation
Model Referencing
Simulation Target

Run on Target Hardware

Configuration Parameters: Sinusoide/Run on Hardware Configuration (Active)
Target hardware selection

Target hardware: Raspberry Pi

Signal monitoring and parameter tuning
TCP/IP port (1024-65535): | 17725
Overrun detection

] Enable overrun detection

Board information

Host name: 169.254.0.3
User name: pi
Password: raspberry

Build directory: | fhome/pi/Sin

oK Cancel Help pply

Figure 4.22: Project’s Build Directory

pi@raspberrypi2-TLC1: ~/Sin

Figure 4.23: Project’s Build Directory

pi@raspberrypi2-TLC1: ~/5in

Figure 4.24: Project execution within the Linux environment

(. Pasolini, A. Bazzi, M.

Mirabella ol Stmulink Defined Radio

Raspberry Pi2 - TLC

sudo ./SinWave_rtt/MW/SinWave

Listing 4.11: Linux directory access

In general, it is possible to run the project using the syntax reported in Listing 4.12, specifying
each time the project name and, if necessary, the BuildDir (in case it is different from the default
one). In particular, this command can be launched when the Shell is initialized, with no need to
access the specific directory of the project, as done in Listing 4.8.

sudo ./home/pi/"BuildDir/"project name_rtt"/MW/"project name"

Listing 4.12: Project execution

In order to stop the execution, it is enough to press the Ctrl+C keys.

As an alternative, you can use the kill PID command, identifying in advance the PID code
of the project that must be stopped with the top command (Listing 4.1) and stopping the project
with the kill command (Listing 4.2).

G. Pasolini, A. Bazzi, M. Mirabella 52 Stmulink Defined Radio

Chapter 5

Raspberry Pi2 as a digital filter

Fle (o Anips Tases Ve Vodon Heb
Dsosn << ilDHUUEL+0 BLONE W

L

Thanks to the external ADC/DAC introduced in Chapter 2, the Raspberry Pi2 is provided
with an (otherwise absent) analog input (microphone input) and with a further analog output
(headphone output). It is therefore possible to use Raspberry Pi2 boards for the digital processing
of input signals.

The realization of a Finite Impulse Response (FIR) digital filter, described below, is an
example of this kind of application.

5.1 Equipment required for this experience

To carry out the experimental activity explained below, a signal generator and an oscilloscope
are needed, along with the following items:

eNr.1 Raspberry Pi2 (Fig.5.1(a)) oNr.1 USB-micro USB cable (Fig.5.1(b))
eNr.1 micro SD memory card (Fig.5.1(c)) eNr.1 USB-LAN adapter (Fig.5.1(d))
eNr.1 Network cable (Fig.5.1(e)) eNr.1 External audio card (Fig.5.1(f))
oeNr.2 8.5mm-RCA jack cables (Fig.5.1(g)) eNr.2 BNC-RCA adapter (Fig.5.1(h))

5.2 Raspberry Pi2 as digital filter

The Simulink model for implementing a FIR filter on a Raspberry Pi2 board is shown in Fig.5.2.
Fig.5.3 shows, instead, the connections between the devices constituting the workstation.

23

Raspberry Pi2 - TLC

(a) Raspberry Pi2 (b) USB-micro USB (c¢) Micro SD memory (d) USB to LAN
cable card adapter

N
&
(e) LAN cable (f) External au- (2) 3.5mm-RCA (h) RCA-BNC
dio card Stereo jack cable adapter
Figure 5.1: Equipment
Input Digital filter Output
RASPBERRYPI FDAT ool RASPBERRYPI

f{c » Convert > ! ‘ » Convert » ‘)j:i
Data Type Conversion

Data Type Corversion]

ALSAAudio Capture Digital ALSAAudio Playback
Filter Design
Control LED
RASPBERRYPI
Tt

| ” » Convert > @
Pulse Data Type Conversion2 led0 (Green)

Generator LED

Figure 5.2: Fir filter Simulink model with Raspberry Pi2

In order to make the scheme shown in Fig.5.2 as clear as possible, four macroblocks have
been highlighted: Imput, Digital filter, Output and Control LED.

The Input macroblock is the input stage of the system. The signal produced by an external
signal generator is acquired by the analog-to-digital converter represented by the ALSA Audio
Capture block and converted by the Data Type Conversion block from the int16 format,
adopted by ALSA Audio Capture block, into the floating point format required by the Digital
Filter Design block.

The Dzigital filter macroblock represents the digital filter itself. The filter characteristics
are selected by the user through the FDATool design tool, that opens when clicking on the

G. Pasolini, A. Bazzi, M. Mirabella 04 Stmulink Defined Radio

Raspberry Pi2 - TLC

Waveform Generator

RCA-BNC Connector N5

e,

Raspberry Pi2 USB Audio Card

3.5mm Jack ¢
audio - 2 RCA

Oscilloscope
RCA-BNC Connector

~ " USB Cable

Figure 5.3: Raspberry Pi2 Input/Output connection scheme

block.

The Output macroblock is the output stage. The filtered signal, represented in the floating
point format, is first converted by the Data Type Conversionl block into the int16 format
required by the following stage, and then it is sent to the ALSA Awudio Playback block,
representing the analog output port.

Comparing this macroblock with the similar Raspberry Pi output macroblock used in the
previous project (Fig.4.2), you can notice the absence of the Matrixz Concatenate block. In
this case, in fact, it is not necessary to duplicate the signal to produce the “stereo” channel
required by the ALSA Audio Playback block. This is possible because the signal produced
by the ALSA Audio Playback block is already in the stereo format.

The Control LED macroblock, not strictly relevant for the aim of this project, will not be
discussed, as it has already been described in Section 4.2.3.

5.3 Elementary blocks used

The list of the elementary blocks used for the project realization is provided hereafter, along
with the reference to the sections in which their functioning is described.

e ALSA Audio Capture (Section 5.3.1) eDigital Filter Design (Section 5.3.2)
eData Type Conversion (Section 4.3.2) eALSA Audio Playback (Section 4.3.4)

G. Pasolini, A. Bazzi, M. Mirabella 95 Stmulink Defined Radio

Raspberry Pi2 - TLC

5.3.1 ALSA Audio Capture

" Source Block Parameters: ALSA Audio Capture >
ALSA Audio Capture (mask) (link)

Captures audio from the sound card using ALSA driver framework.
The dimensions of the block output are [Nx2], where N is the number
of samples per frame, and 2 is the number of audio channels. The
data type of the block output is int16.

Use the Audio sampling frequency parameter to set the sampling rate
in Hertz (Hz). Use the Frame size parameter to set the number of
samples per frame (N). The sample time of the block is the Frame
size (M) divided by the Audio sampling frequency (Hz).

Parameters

Device name:

"plughwe:0,0'

Audio sampling frequency (Hz): 48000 -

Frame size (M):

20000

Cancel Help Apply

Figure 5.4: ALSA Audio Capture block

The ALSA Audio Capture block represents the sound card’s ADC converter: It receives
the analog signal provided by an external source and convert it into a digital signal. This block
is, therefore, the analog input port of the system.

The ALSA Audio Capture block is controlled by the ALSA driver, that manages all the
audio devices connected to the hardware, including the USB sound card described in chapter 4
that hosts the microphone input.

This block generates a signal with dimension [Nx2], where N is the number of samples grouped
in each frame and 2 is the number of audio channels. Each sample is represented in the int16
format, that is, as a 15 bits integer-+1 sign bit.

The sampling frequency is selected in the Audio sampling frequency field of the configuration
window shown in Fig.5.4. In this model, and in all the following ones, a sampling rate of 48000
samples/s was used, corresponding to the highest possible value.

The sound card’s identifier must be entered in the Device Name field, according to the syntax
“plughw:card,device”. The card and device parameters can be easily detected with the arecord -1
command (section 2.1, Listing 2.6). As shown in section 2.1, a list of the input devices connected
to the Raspberry Pi2 will be displayed. If the sound card configuration is properly carried out,
the Device Name will always have the form ‘plughw:0,0".

It is essential to activate the microphone input using the alsamizer command (section 2.1,
Fig.2.7).

G. Pasolini, A. Bazzi, M. Mirabella o6 Stmulink Defined Radio

Raspberry Pi2 - TLC

5.3.2 Digital Filter Design

0 Block Parameters: Digital Filter Design = &=
File Edit Analysis Targets View Window Help
Dk a< 0 DR MHEM: T BELORE N
rCurrent Fikter Information —Wag Resp (dB)
T T T T
or TN T
— \
Structure: Direct-Form FIR % 20 | "‘ 7
|
Order: 122 P [\
Stable: Yes o “40f | | 8
Source: Designed = | |
601 ‘ N
=
-80 T{q‘ i MR "\I" Mn AN ,"I i "‘u i I'] AN -"I e -"I My -"‘ A
LRI LLEEFREEEPTET ey
Store Fiter .. o 5 10 15 20
Filter Manager ... Frequency (kHz)
— Response Type — Filter Order — Frequency Specifications — Mag Specifications
o Lowpass () Specify order: |10 Units: |Hz Y] Units: | dB
O |Highpass .
— (®) Minimum order Fs: 48000
(@) Bandpass Astopl: 80
) — 5000
_,B ; Bandstop Options Fstop1 Apass |1
()" | Differentiator Density Factor: |18 Fpass1- |6000
[£2]| L pesian etnod fERTE
— Fpass2: (9000
@ IR | Butterworth v
B Fstop2: 10000
@ ® FIR | Equiripple v
E' Input processing: Columns as channels (frame based) L] Design Filter
Designing Filter ... Done

Figure 5.5: Configuration window of the Digital Filter Design. block

The specifications of the FIR filter are introduced by means of the Digital Filter Design
- FDATool block, whose window (displayed after a double click on the block itself) is shown in
Fig.5.5.

We won’t describe here this powerful filter design tool and its functioning. We will focus our
attention only on the sampling rate Fs, required by the tool as an input parameter.

For the correct functioning of the modelled system, the sampling rate must necessarily be the
one used in the ALSA Audio Playback (par.4.3.4) and ALSA Audio Capture (par.5.3.1)
blocks. In this specific case, then, we set Fs=48000 .

As for the input signal, generated by an external signal generator, it is necessary to remember
that, in order to fulfil the conditions set by the sampling theorem with a good safety margin, its
frequency range must be comprised in the [0 20 kHz| interval.

5.3.3 Data Type Conversion
The Data Type Conversion block is described in Section 4.3.2. In the project here considered
this block adopts the same configuration shown in Fig.4.8.

5.3.4 ALSA Audio Playback

The ALSA Audio Playback block represents the DAC converter of system; his functioning is
explained in Section 4.3.4. In the project here considered this block adopts the same configuration

G. Pasolini, A. Bazzi, M. Mirabella o7 Stmulink Defined Radio

Raspberry Pi2 - TLC

shown in Fig.4.10.

5.3.5 Implementation and test of the digital filter

Once the Simulink project has been realized and tested through simulations, it is possible to
carry out the deploy to hardware procedure, as described in Section 4.4. The project will be
automatically executed as soon as the deploy procedure is completed.

In order to test the project, a pass-band filter with an attenuation of 80 dB in the intervals
0-5 kHz and 10-24 kHz has been designed. See Fig.5.5 for the corresponding configuration of the
Digital Filter Design block.

Connecting the Raspberry Pi2 input port to the signal generator and the output port to the
oscilloscope, as shown in Fig.5.3, it is possible to test the filter behaviour. In particular, changing
the frequency of an input sine wave in the [0-20 kHz| interval, the filtering effect can be easily
observed, as shown in Fig.5.6 and in Fig.5.7.

Measwre P1:freq(C2) P2ampl(C2) P3:freq(C1) Pd:ampl(C2) P& - - PE:- - - PF--- PE:---
walue 6116241 kHz 3571 mY 14415 MHz 3571 my
mean 1.3865461 MHz 421 30m% 1.599811 MHz 42130 mv'
min 5404851 kHz 28mv 426 kHz 28my
max 53376932 MHz 557 mY 56195 MHz 557 my
=dev 1.1678804 MHz 15615 mY 1.041283 MHz 15615 my

19.787e+3 281 261 435e+3 281
' v i v

¥1= 000ps

Figure 5.6: Measured filter’s output: sine wave at 6.1KHz

G. Pasolini, A. Bazzi, M. Mirabella o8 Stmulink Defined Radio

A [\ ANANTANANYA

VAAVAAVIAVAVAVAVAVAY

3

Measwre P1:freq(c2) P2ampl{C2) Pafreg(C1) PdampliC2) PS--- PEi-- - P7--- P8:-- -
valug 9.260643 kHz 248my 1.07236 MHZ 248 my

maan 1.0083352 MHZ 486 44 my 1584089 MHZ 486.44 mY

min 5404551 kHz 28mY 233 kHz 28my

ma 5.3376932 MHz ST my 60186 MHz 571 my

sdav 1.1654910 MHZ 100.70mY 1037785 MHZ 100.70 mY

27 515e+3 1.507e+3 1.509241e+5 1.507e+3

H1= 000ps

Figure 5.7: Measured filter’s output: sine wave at 9.2 Kz

Chapter 6

Baseband modulations with Raspberry
Pi2

N A

1 gy,

In this chapter, we introduce two Simulink projects for the hardware implementation of
baseband digital transmitters with Pulse Amplitude Modulation - PAM. As it is known, a general
M-PAM modulator associates at each symbol a; a suitable baseband waveform g(t), generating
a PAM signal represented by the following equation:

oo

s(t) = Y aig(t—il), (6.1)
i=—00
where
e a; represents the generic symbol belonging to a M-ary alphabet;
e ¢(t) is the waveform associated to each symbol,

e T is the time interval between one symbol and the following one.

In order to better understand the projects described below, it is useful to remind that each
M-PAM symbol a; represents a number of bits given by

bsymbol = IOgZ M. (62)

61

Raspberry Pi2 - TLC

The project of a 2-PAM transmitter will be firstly described in the following. In this case, the bits
{0,1} to be transmitted are mapped into M = 2 possible symbols (for example a; € {—1,+1}).
Such model will evolve later in a 4-PAM transmitter, in which each couple of bits is mapped

into M = 4 symbols (for example a; € {—1, —%, %, +1}).

6.1 Equipment required for this experience

To carry out the experimental activity explained below, an oscilloscope is needed, along with the
following items:

eNr.1 Raspberry Pi2 (Fig.6.1(a)) eNr.1 USB-micro USB cable (Fig.6.1(b))
eNr.1 Micro SD memory card (Fig.6.1(c)) eNr.1 adattatore USB-LAN (Fig.6.1(d))
eNr.1 Network cable (Fig.6.1(e)) eNr.1 Scheda audio esterna (Fig.6.1(f))

oeNr.1 8.5mm-RCA jack cable (Fig.6.1(g)) eNr.1 adattatore BNC-RCA (Fig.6.1(h))

&~

(b) USB-micro USB (c¢) Micro SD memory (d) USB to LAN
cable card adapter

N
(0
(e) LAN cable (f) External au- (2) 3.5mm-RCA (h) RCA-BNC
dio card stereo jack cable adapter

Figure 6.1: Equipment

6.2 Raspberry Pi2 as 2-PAM transmitter

The Simulink model for implementing a 2-PAM transmitter on a Raspberry Pi2 board is shown
in Fig.6.2. Fig.6.3 shows, instead, the interconnections among the different devices constituting
the workstation.

In order to make the scheme shown in Fig.6.2 as clear as possible, four macroblocks have
been highlighted.

The first macroblock, called BaseBand Modulation, contains all the Simulink blocks
needed to implement the 2-PAM modulation. The signal at its output port goes through an

G. Pasolini, A. Bazzi, M. Mirabella 62 Stmulink Defined Radio

Raspberry Pi2 - TLC

Raspberry Pioutput

AGC -Automatic Gain Control
RASFBERRYFI

J* I\

Baseband Modulation - Pulse Amplitude Modulation - 2-PAM
Dsts Type Comersion2 Thetn

Concatenate

ALSA Audio Flayback

BernouliBinary VB %{Z}-’\B D Raised Cosine Gain
Generaior Mocuatar mag Transmit Fiter

Baseband

Control LED
RASFBERRYFI

= W

Fuke Data Type Comversicnt led0 (Green)
Generator LED

e L
Bemoull 2.PAM 4b . »x
Binary Nermal A : >
Diide

Figure 6.2: Simulink model 2-PAM modulation

Raspberry Pi2 USB Audio Card

-

Oscilloscope

3.5mm Jack
audio - 2 RCA
NS
E e
S ﬁv@'}' RCA-BNC Connector

= - USB Cable

Figure 6.3: Connection scheme

Automatic Gain Control - AGC stage, that adapts the signal’s dynamic range to the level
required by the following macroblock, called Raspberry Pi output (see Section 4.2.2), repre-
senting the Raspberry Pi2’s analog output.

The Control LED macroblock, discussed in Section 4.2.3, will be no more considered.

6.3 Elementary blocks used

The list of the elementary blocks used for the project realization is provided hereafter, along
with the reference to the sections in which their functioning is described.

e Bernoulli Binary Generator (Section 6.3.1) e Maz-Divide-Gain (Section 6.3.5)

e M-PAM Modulator Baseband (Section 6.3.2) eData Type Conversion (Section 4.3.2)
eComplez to Real-Imag (Section 6.3.3) e Matriz Concatenate (Section 4.3.3)
eRaised Cosine Transmit Filter (Section 6.3.4) eALSA Audio Playback (Section 4.3.4)

G. Pasolini, A. Bazzi, M. Mirabella 63 Stmulink Defined Radio

Raspberry Pi2 - TLC

6.3.1 Bernoulli Binary Generator

The Bernoulli Binary Generator block is the binary information source. It generates a
random sequence of independent bits with Bernoulli statistics: the bit 0 is generated with
probability Probability of a zero and the bit 1 with probability 1-Probability of a zero.

"4 Source Block Parameters: Bernoulli Binary Generator “

Bernoulli Binary Generator

Generate a Bernoulli random binary number.
To generate a vector output, specify the probability as a vector.

Farameters
Probability of a zero: |0.5|
Initial seed: 61

Sample time: | 20/48000
Frame-based outputs

Samples per frame: | 1000

Output data type: double -

Cancel Help Apply

Figure 6.4: Configuration window of the Bernoulli Binary Generator block

The configuration window of this block (Fig.6.4) asks first of all to specify the Probability of
a zero, that will be assigned the value 0.5, in order to have a sequence of equiprobable bits.

The Initial Seed field concerns the seed used by the random number generator. In our case,
the value specified is 61, but the proper functioning of the model is independent of the chosen
value.

The Sample Time parameter represents the time interval between the generation of a bit and
the following one. The reciprocal of such parameter B, = m represents the bit rate [%]
of the binary generator, that is, the number of bits generated per second.

The value to assign to Sample Time is strictly connected to

e the Audio Sampling Frequency defined in the ALSA Awudio Playback block (sect.4.3.4),

e the upsampling factor Output samples per symbol defined in the Raised Cosine Transmit
Filter (further details about this block will be given in section 6.3.4),

e the number of bits bsympo associated to each modulation symbol (eq.(6.2)).
In particular it must be

r

- Output samples per symbol = Audio Sampling Frequency. (6.3)
bsymbol

G. Pasolini, A. Bazzi, M. Mirabella 64 Stmulink Defined Radio

Raspberry Pi2 - TLC

Recalling that B, = m, it is, therefore

Output samples per symbol

(6.4)

Sample Time = bsymbol - Audio Sampling Frequency

Please observe that only specific values of Sample Time are allowed. In fact, the Audio
sampling frequency is dictated by the ALSA Audio Playback block, bsympo depends on the
adopted modulation and Output Samples per symbol must be an integer!.

In this specific case, as Audio Sampling Frequency=48000, Output samples per symbol=20
and bsympor = logy M = 1, it results Sample Time = %.

The Sample per frame field specifies the number of bits grouped? in a single frame, established
in this specific case as 1000. Such choice is, however, not binding.

Finally, the Output data type is maintained at the default setting double.

6.3.2 M-PAM Modulator Baseband

The M-PAM Modulator Baseband block converts the input bits sequence into a symbols
sequence. In the 2-PAM case here considered, an output symbol a is generated for each input
bit b (as dictated by eq.(6.2)), according to the law defined in table 6.1

Table 6.1: 2-PAM modulator. Symbol encoding

bl a
0|-S
11]S

where the value of S depends on the choice made in the block’s configuration window for the
Normalization Method field, that will be discussed later.

The first input parameter to set in the block’s configuration window, shown in Fig.6.5, is the
M-ary number of possible output symbols. In the 2-PAM case it is M-ary number==2.

The Input Type field relates to the type of input data. The Bernoulli Binary Generator
block, preceding the examined block, generates bits, and so this field must be set accordingly
(bit).

The Constellation ordering field defines the law regulating the correspondence between bits
and symbols. In the 2-PAM case such correspondence is the one shown in table 6.1, independently
of the choice made (Gray o Binary).

For the Normalization Method field the Peak Power option is chosen. The sequence of symbols
is thus normalized in terms of peak power, whose value, referenced to 1 Ohm, is defined by the
field Peak power, referenced to 1 Ohm (watts). In the project here considered the Peak power is
1.

The resulting constellation is shown in Fig.6.6.

According to the previous choices, the output of the M-PAM Modulator Baseband block
is a sequence of +1 e -1. Note that, despite the fact that symbols are purely real quantities,
the M-PAM Modulator Baseband block generates each of them in the complex format,
associating to each symbol an imaginary component with null value (e.g., [..., 1440, —1+710, ...]).

'The Output Samples per symbol parameter will be discussed in section 6.3.4.
2 As observed in section 4.3.1, Raspberry Pi2 boards operate on blocks of data (frames) for efficiency reasons.

G. Pasolini, A. Bazzi, M. Mirabella 65 Stmulink Defined Radio

Raspberry Pi2 - TLC

M-PAM Modulator Baseband

Modulate the input signal using the pulse amplitude modulation method.
This block accepts a scalar or column vector input signal.

The input signal can be either bits or integers. When you set the 'Input type'
parameter to 'Bit', the input width must be an integer multiple of the number of
bits per symbol.

Main Data Types

Parameters

M-ary number: 2

Input type: Bit
Constellation ordering: Gray
Mormalization method: Peak Power
Peak power, referenced to 1 ohm (watts): |1

View Constellation

Cancel Help Apply

Figure 6.5: Configuration window of the M-PAM Modulator Baseband block

6.3.3 Complex to Real-Imag

The M-PAM Modulator Baseband block is followed by the Complex to Real-Imag block,
with the purpose of converting the symbols from the complex into the real format, removing
the imaginary (null) components (Fig.6.7). It is a necessary conversion as the Raspberry Pi2’s
output system requires real data.

6.3.4 Raised Cosine Transmit Filter

The Raised cosine transmit filter generates the PAM signal, according to eq.(6.1), starting
from the symbols at its input. The corresponding configuration window is shown in Fig.6.8.

In particular, this block associates to each symbol generated by the M-PAM Modulator
Baseband block (one symbol each Sample Time in the 2-PAM case here considered) the sampled
values of the waveform g(t), taken with a sampling interval Tj,.

The ratio M defines the OQutput Samples per symbol parameter, set at 20 in the
present project. In general the value to assign to this parameter depends on:

e the Audio sampling frequency and bsympo. In fact, once the Audio sampling frequency is
defined (dictated by the ALSA Audio Playback block) and bsympor is known (given the
adopted modulation) the Qutput Samples per symbol must be an integer such that eq.(6.4)
is satisfied. As observed in section 6.3.1, this poses a condition to the values of Sample
Time.

G. Pasolini, A. Bazzi, M. Mirabella 66 Stmulink Defined Radio

Raspberry Pi2 - TLC

File Edit Wiew Insert Tools Desktop Window Help

NEES bR TDEL 20| aD

2-PAM.Gray Mapping,Peak Pow.=1W, Output DT=double

Quadrature Amplitude
=)

S

I I
0.5 o] 05
In-phase Amplitude

Figure 6.6: 2-PAM Constellation

Complex to Real-Imag

Output the real and/or imaginary components of the input.

Parameters

Output: | Real

9

Figure 6.7: Configuration window of the Complex to Real-Imag block

e the bandwidth B of the PAM signal, which is function® of G(f) = F{g(t)}: Given B, the
minimum value of T}, that fulfils the sampling theorem is such that %g > 2B. The parameter

Qutput Samples per symbol=

w must be, therefore, an integer value such that the

condition Tig > 2B is fulfilled.

Both the above conditions must be fulfilled by the value chosen for the Output Samples per symbol

3The symbol F{-} represents the continuous-time Fourier transform.

G. Pasolini, A. Bazzi, M. Mirabella 67 Stmulink Defined Radio

Raspberry Pi2 - TLC

. “s| Function Block Parameters: Raised Cosine Trans Filte

Raised Cosine Transmit Filker

Upsample and filter the input signal using a normal or square root raised cosine FIR
filker.

Main Data Types

Parameters

Filter shape: ’Normal -

Rolloff factor: 0.8
Filter span in symbols: 10
Output samples per symbol: 20

Linear amplitude filter gain: 1

Input processing: [Columns as channels (frame based) v]

Rate options: ’Enforce single-rate processing v]

[T Export filter coefficients to workspace

[Uisualize filter with F‘I.I’Tool]

s.}' [OK H Cancel H Help] Apply

|5 ==

Figure 6.8: Configuration window of the Raised cosine transmit filter block

parameter.

The duration of the waveform g(t) is defined by the Filter span in symbols parameter, set at
10. This value is meant normalized with respect to Sample Time.

As a consequence of the previous choices, the number of samples of g(t) that are generated
by the Raised cosine transmit filter for each input symbol is

Output Samples per symbol - Filter span in symbols = 20 - 10 = 200.

This sequence represents the impulse response of the raised-cosine filter and therefore, as it
is a FIR filter, it is the sequence of its coefficients.

The particular waveform ¢(t) is chosen setting the Filter Shape field. The possible choices are
Normal, corresponding to the raised cosine waveform, and Square root, referring to the square
root raised cosine waveform. In this project the Filter Shape field is set at Normal.

The Rolloff factor parameter represents the filter’s roll-off factor. Its value, that affects the
signal bandwidth B, can be freely chosen within the interval [0, 1].

The Linear amplitude filter Gain parameter represents the filter gain, and is set at its default
value 1.

Consistently with the previous blocks, also the Raised Cosine Transmit Filter works in
frame based mode and the Input processing field has been consequently set.

The Rate options field, set at Enforce Single Rate Processing, forces the block to adapt the

G. Pasolini, A. Bazzi, M. Mirabella 68 Stmulink Defined Radio

Raspberry Pi2 - TLC

output frame length so that the input and output rates are the same, independently of the
upsampling operation performed by the filter itself.

6.3.5 Max-Divide-Gain (Automatic Gain Control)

AGC - Automatic Gain Control

A
#+ X

Divide Gain

Figure 6.9: Automatic Gain Control

The Automatic Gain Control macroblock adapts the signal’s dynamic range to the re-
quirements of the Raspberry Pi2™s output port. The macroblock structure, shown in Fig.6.9,
is based on the Max, Divide and Gain elementary blocks.

For each input frame, in particular, the Automatic Gain Control macroblock performs,
first of all, a normalization, dividing all the samples of each frame by their maximum value, then
carries out a multiplication by K = 24 — 1. The configuration windows of the three blocks are
shown in Fig.6.10(a), Fig.6.10(b) and Fig.6.11, respectively.

As a consequence of this operation, the highest value in each frame is equal to 24 — 1,
consistent with the highest value required by the Raspberry Pi2™s output port, equal to 21° —1.

In principle, the gain could be set at 2! — 1, but some malfunctioning was observed with
such configuration. Such problems were solved setting the dynamic range to 2'4 — 1 .

6.3.6 Implementation and test of the 2-PAM transmitter

Once the Simulink project has been realized and tested through simulations, it is possible to
carry out the Deploy to Hardware procedure, as described in Section 4.4. The project will be
automatically executed as soon as the deploy procedure is completed.

Connecting the Raspberry Pi2’s output to the oscilloscope, following the scheme in Fig.6.3,
it is possible to observe the typical shape of a 2-PAM signal with raised cosine filtering, as shown
in Fig.6.12.

The eye diagram shown in Fig.6.13 shows, however, an unexpected degradation, that deserves
specific investigations. Observing a larger time interval (Fig.6.14) unexpected fluctuation are
detected, most likely caused by the low quality of the digital-to-analog conversion.

G. Pasolini, A. Bazzi, M. Mirabella 69 Stmulink Defined Radio

Raspberry Pi2 - TLC

r ~
“& Function Block Parameters: Divide @

Product

Multiply or divide inputs. Choose element-wise or matrix product and
specify one of the following:
a) * or [for each input port. For example, **/* performs the operation

'ul¥u2/udFu4'. r - ~
b) scalar specifies the number of input ports to be multiplied. " Function Block Parameters: Max @
If there is only one input port and the Multiplication parameter is set to MinMax
Element-wise(.*), a single * or / collapses the input signal using the
specified operation. However, if the Multiplication parameter is set to Output min or max of input. For a single input, operators are applied
Matrix(*}), a single * causes the block to output the matrix unchanged, and across the input vector. For multiple inputs, operators are applied across
a single [causes the block to output the matrix inverse. I the inputs.
Main Signal Aftributes Main | Signal Attributes
Number of inputs: Function: [max -
.
Humber of input ports:
Multiplication: | Element-wise(.*) h 1

Enable zero-crossing detection

s}- [0K J[Cancel H Help Apply J [0K J[Cancel H Help Apply

(a) Divide (b) Max

Figure 6.10: Maz and Divide blocks

*& Function Block Parameters: Gain x
Gain

Element-wise gain (y = K.*u) or matrix gain (y = K*u or y = u™K).

Main Signal Attributes Parameter Attributes

Gain:
st

Multiplication: | Element-wise(K.*u) -

5_}- Cancel Help Apply

Figure 6.11: Gain block

6.4 Raspberry Pi2 as a 4-PAM transmitter

In the following section we will describe the Simulink model for the hardware implementation of
a 4-PAM transmitter. In this case a modulation symbol a; is generated for each couple of input
bits (for example a; € {—1,—3, %, +1}).

G. Pasolini, A. Bazzi, M. Mirabella 70 Stmulink Defined Radio

Raspberry Pi2 - TLC

A

imehaze

0.00 mz| [Trigger
500 ;]

¥l= 8150ps

Figure 6.13: Measured 2-PAM eye diagram

The model of the 4-PAM transmitter, shown in Fig.6.15, shows minimal variations compared
to that of the 2-PAM transmitter (Fig.6.2). The changes concern only the Bernoulli Binary

G. Pasolini, A. Bazzi, M. Mirabella 71 Stmulink Defined Radio

Raspberry Pi2 - TLC

Figure 6.14: ADC/DAC tension levels fluctuations

Generator and M-PAM Modulator blocks. For this reason, in the following section we will
discuss only the changes concerning such blocks, whereas the configurations of the remaining
blocks are unchanged with respect to the 2-PAM transmitter.

Raspberry Pi output

AGC - Automatic Gain Control

RASPBERRYPI

o)
Baseband Modulation - Pulse Amplitude Modulation - 4-PAM S .
fmS i P ata Type Conversion:
s |—| Concatenate ALSA Audio Playback
Bemoulli 4PAM 1 A) .
Binary] Nomal I " | {>:

Bernouli Bnary AN %‘;’:ﬂi’;‘“ Raised Cosne Divide Gain
Generator Modulator J Transmit Fikter Control LED
Baseband RASPOERRYP
L]
ﬂ Comvert @
Wax . -

Pulse Data Type Corversion] led0 (Green)

Generator LED

Figure 6.15: Simulink model 4-PAM modulator

6.5 Elementary blocks used

The list of the elementary blocks used for the project realization is provided hereafter, along
with the reference to the sections in which their functioning is described.

e Bernoulli Binary Generator (Section 6.5.1) o Maz-Divide-Gain (Section 6.3.5)

e M-PAM Modulator Baseband (Section 6.5.2) eData Type Conversion (Section 4.3.2)
eComplez to Real-Imag (Section 6.3.3) e Matriz Concatenate (Section 4.3.3)
eRaised Cosine Transmit Filter (Section 6.3.4) eALSA Audio Playback (Section 4.3.4)

6.5.1 Bernoulli Binary Generator

As it is known, the Bernoulli Binary Generator represents the binary information source.
It generates a random sequence of independent bits with Bernoulli statistics. Comparing its
configuration window, shown in Fig.6.16, with that of the same block for the 2-PAM modulator,

G. Pasolini, A. Bazzi, M. Mirabella 72 Stmulink Defined Radio

Raspberry Pi2 - TLC

shown in Fig.6.4, the only difference is the Sample Time parameter, that represents the time
interval between the generation of a bit and the following one.

As anticipated in section 6.3.1, the value to assign to this parameter is strictly related to
the Audio Sampling Frequency, defined in the ALSA Audio Playback block (sect.4.3.4), to
the number of Output samples per symbol, defined in the Raised Cosine Transmit Filter
(sect.6.3.4), and to the number of bits byymso associated to each symbol of the chosen modulation
(eq.(6.2)). We already pointed out, in particular, that for a generic M-PAM modulation it is:

) Output samples per symbol
Sample Time =

bsympol - Audio Sampling Frequency’

In this specific case, as Audio Sampling Frequency=48000, Output samples per symbol=20 and
bsymbol = logg M = 2, it is Sample Time = 55, as shown in Fig.6.16.

"4 Source Block Parameters: Bernoulli Binary Generator “

Bernoulli Binary Generator

Generate a Bernoulli random binary number.
To generate a vector output, specify the probability as a vector.

Farameters

Probability of a zero: | 0.5|
Initial seed: |61

Sample time: | 20/{2*48000)
Frame-based outputs

Samples per frame: |1000

Output data type: | double -

Cancel Help Apply

Figure 6.16: Configuration window of the Bernoulli Binary Generator block

All the other parameters are the same adopted for the 2-PAM transmitter (sect.6.3.1).

6.5.2 M-PAM Modulator Baseband

As explained in section 6.3.2, the M-PAM Modulator Baseband block converts the sequence
of input bits into a sequence of symbols. In the 4-PAM case, in particular, each pair bb of input
bits corresponds a symbol a (as it results from equation (6.2)), according to a correspondence
law which is, in principle, arbitrary. The correspondence adopted in this project is shown in
table 6.2, where the values of S; and Sy depend on the choice made in the block’s configuration
window for the Normalization Method field.

G. Pasolini, A. Bazzi, M. Mirabella 73 Stmulink Defined Radio

Raspberry Pi2 - TLC

Table 6.2: 4-PAM modulator.Symbol encoding

bb | a
00 | -Ss
01 | -Sy
11]S
10 | S,

The only difference between the configuration chosen for the 2-PAM modulator, shown in
Fig.6.5, and the 4-PAM modulator relates to the M-ary number parameter, that must be set
at 4, consistently with the 4-PAM modulation here considered. The remaining parameters are
unchanged.

The configuration window resulting in the present case is shown in Fig.6.17.

1" Function Block Parameters: M-PAM Modulator Baseband “
M-PAM Modulator Baseband

Modulate the input signal using the pulse amplitude modulation method.
This block accepts a scalar or column vector input signal.

The input signal can be either bits or integers. When you set the 'Input type'
parameter to 'Bit', the input width must be an integer multiple of the number of
bits per symbol.

Main Data Types

Parameters

M-ary number: 4

Input type: Bit -
Constellation ordering: Gray -
Mormalization method: Peak Power -

Peak power, referenced to 1 ohm (watts): |1

View Constellation

Cancel Help Apply

Figure 6.17: Configuration window of the M-PAM Modulator Baseband block

With such choices, the output of the M-PAM Modulator Baseband block is a sequence
of symbols —Sy = -1, —5; = —%, S1 = —1—%, So = +1. The corresponding constellation is shown

in Fig.6.18.
6.5.3 Complex to Real-Imag

The Complex to Real-Imag block is described in Section 6.3.3. In the project here considered
this block adopts the same configuration shown in Fig.6.7.

G. Pasolini, A. Bazzi, M. Mirabella 74 Stmulink Defined Radio

Raspberry Pi2 - TLC

4 pam4/M-PAM Modulator Baseband: Constellation View = B
File Edit Wiew Insert Tools Desktop Window Help k]
Ddde | RRAROVDEL- 2/ 0EE aOd
4-PAM,Gray Mapping,Peak Pow.=1W,Output DT=double
0.3 B
0.2 .
1]
=
= 01 oo ™ " 10 B
=
E
<
o 0 - - - -
=
®
5
801 a
=)
02 1
031 n
-1 0.5 1] 0.5 1
In-phase Amplitude

Figure 6.18: 4-PAM constellation

6.5.4 Raised Cosine Transmit Filter

The Raised Cosine Transmit Filter is described in Section 6.3.4. In the project here con-
sidered this block adopts the same configuration shown in Fig.6.8.

6.5.5 Max-Divide-Gain (Automatic Gain Control)

The Maz-Divide-Gain blocks, constituting the automatic gain control macroblock, are de-
scribed in Section 6.3.5. In the project here considered these blocks adopt the same configuration
shown in Fig.6.10 and in Fig.6.11.

6.5.6 Data Type Conversion

The Data Type Conversion block is described in Section 4.3.2. In the project here considered
this block adopts the same configuration shown in Fig.4.8.

6.5.7 Matrix Concatenate

The Matriz Concatenate block is described in Section 4.3.3. In the project here considered
this block adopts the same configuration shown in Fig.4.9.

G. Pasolini, A. Bazzi, M. Mirabella 75 Stmulink Defined Radio

Raspberry Pi2 - TLC

6.5.8 ALSA Audio Playback

The ALSA Audio Playback block is described in Section 4.3.4. In the project here considered
this block adopts the same configuration shown in Fig.4.10.

6.5.9 Implementation and test of the 4-PAM transmitter

Once the Simulink project has been realized and tested through simulations, it is possible to
carry out the Deploy to Hardware procedure, as described in Section 4.4. The project will be
automatically executed as soon as the deploy procedure is completed.

Connecting the Raspberry Pi2’s output to the oscilloscope, following the scheme in Fig.6.3,
it is possible to observe the typical shape of a 4-PAM signal with raised cosine pulses, as shown
in Fig.6.19

cx + l
|
|
|
|
|
|
|
|
Fy

imebaze 320 ps| |Tricger [C2]

K1= 00ps

10 my

Figure 6.19: 4-PAM signal

6.6 PAM modulations with square pulses

The 2-PAM and 4-PAM transmitters previously described adopt a raised cosine shaping filter,
realized through the Raised Cosine Transmit Filter.

For didactic purposes it could be useful to consider also 2-PAM and 4-PAM transmitters with
square pulses. The correspondent models are shown in Fig.6.20 and in Fig.6.21.

Comparing the new models with the previous ones, shown in Fig.6.2 and 6.15, it is immedi-
ately evident that the only difference is in the BaseBand Modulation macroblock, described
in the following section.

G. Pasolini, A. Bazzi, M. Mirabella 76 Stmulink Defined Radio

Raspberry Pi2 - TLC

Base Band Modulation - Pulse Amplitude Modulation - 2-PAM

s LM
Bemoulli
Binary

Bemoul Binary
Generator

2PAM

Reu)

W-PAN
Modulator

Complexto
Real-imag

x[n/20]

AGC -Automatic Gain Control

FR

Raspberry Pi output

Data Typs Comversion2

Concatenate

RASPBERRYPI
o)

ALSA Audio Playback

Control LED

Interpolation
Baseband RASPBERRYPI
L]
Convert
Pulss Data Type Canversont led0 (Green)
Generator LED
Figure 6.20: 2-PAM transmitter with square pulses
Raspberry Pi output
AGC - Automatic Gain Control
RASPBERRYPI
| Convert o)
Baseband Modulation - Pulse Amplitude Modulation - 4-PAM 2
Dats Type Conmvers ion2 oy
LWL Concatenale ALSA Audio Playback
4+PAM 4;- (/20 r »| D
Complex =
MAPAM Divide Gain
Genesator Modulater A ,HE::smn Control LED
Baseband RASFEERRYFI
-] |
Convert
Max .
Puse Data Type C onversiont 1240 {Green)
Generaior

LED

Figure 6.21: 4-PAM transmitter with square pulses

6.6.1 BaseBand Modulation

In order to realize PAM transmitters with square pulses, starting from the previously discussed
PAM transmitters with raised cosine pulses (see Fig.6.2 and Fig.6.15), it is enough to replace the
Raised Cosine Transmait Filter with a FIR Interpolation block that, properly configured,
works as a square pulse shaping filter.

The new BaseBand Modulation macroblocks for the 2-PAM and 4-PAM transmitters with
square pulses are shown in Fig.6.22.

The configuration window of the FIR Interpolation block is shown in Fig.6.23. As it plays
the role of shaping filter, this block must necessarily perform an interpolation (for each input
symbol, it must generate the sampled sequence of the corresponding waveform ¢(t)). Also in
this case an upsamplig factor equal to 20 is adopted, hence we set Interpolation factor=20. This
parameter is the correspondent, for the FIR Interpolation block, of the Ouitput samples per
symbol parameter requested by the Raised Cosine Transmit Filter (see Fig.6.8).

The FIR filter coefficients field requires to enter the filter’s coefficients, that corresponds to
the samples of the desired waveform g(¢). It follows that, in order to generate a square pulse
with duration equal to the symbol time, it is enough to enter a sequence of 1s as long as the
interpolation factor (equal to 20, in our case). For this purpose, the command ones (1,20) can
be used.

The remaining parameters of the configuration window keep the default settings.

G. Pasolini, A. Bazzi, M. Mirabella 77 Stmulink Defined Radio

Raspberry Pi2 - TLC

Base Band Modulation - Pulse Amplitude Modulation - 2-PAM
—Lwwm
Bernoulli » 2-PAM 1 Re(u) » *[nf20]
Binary
— Complex to
e i S
Modulator Interpolation
Baseband

(a) 2-PAM transmitter with square pulse shaping filter.

Baseband Modulation - Pulse Amplitude Modulation - 4-PAM
W W T LW
Bernoulli - 4-PAM B Refu) - #[n/20] ——
Binary
m— Comple o
HEG"“J"'EEI':'“Y M-FAN ReakImag FIR
Mo-dulator ||'|‘EI'|}EIHtH}I'I
Baseband

(b) 4-PAM transmitter with square pulse shaping filter.

Figure 6.22: Square pulse PAM modulations

6.6.2 2-PAM and 4-PAM transmitters with square pulses implementation
and check

Once the Simulink project has been realized and tested through simulations, it is possible to
carry out the Deploy to Hardware procedure, as described in Section 4.4. The project will be
automatically executed as soon as the deploy procedure is completed.

Connecting the Raspberry Pi2’s output to the oscilloscope, following the scheme in Fig.6.3,
the signals can be finally observed.

Fig.6.24 and 6.25 show, in particular, the 2-PAM and 4-PAM signals with square pulses.
The overshoots that can be observed are due to the filtering carried out by the sound card, that
removes relevant spectral components of the signal spectrum.

The corresponding eye diagrams, shown in Fig.6.26 and 6.27 reflect such overshoots and the
undesired fluctuations already observed in Section 6.3.6.

In Fig.6.28 an example of spectrum measurement is also reported.

G. Pasolini, A. Bazzi, M. Mirabella 78 Stmulink Defined Radio

FIR Interpolation

Upsample the input signal by an integer-valued factor, then apply an FIR filter. The block scales the filter coefficients by
the interpolation factor and implements the FIR filter using a polyphase structure.

Coefficient source

(@ Dialog parameters
() Tnput port
() Filter object

Main | Data Types

FParameters

FIR filter coefficients: |ones(1,20) |

Interpolation factor: |20 |

Input processing: | Columns as channels (frame based) - |

Rate options: |Enforoe single-rate processing - |

View Filter Response

Q | oK || Cancel || Help || Apply |

Figure 6.23: Configuration window of the FIR Interpolation block

Figure 6.24: 2-PAM modulation with square pulses

40 ps| [Trigger
Lita

100kS 3l
Hl= 81.50ps

Figure 6.26: 2-PAM modulation. Eye diagram

T

I A

Figure 6.27: 4-PAM modulation. Eye diagram

‘m DWE 1 - Spectum Analzer - omm
e Gt Comol Ven Satngs Wik Mo

FASSEIN wents ¥ Markers Q Add Zoom | (4 Options

D

I] e A ra

0any

2608

E

5048V

5648V

“saBv

Tagev

| Arlg s i

-80dBv. u ANALOG
| Conter 5z 1.00kHe v Span: 10kl DEVICES

Spectrum plot

Figure 6.28: Spectrum of the 4-PAM signal with square pulses

Chapter 7

2-ASK and 4-ASK modulations with
Raspberry Pi2

The ASK (Amplitide Shift Keying) modulation represents digital data as variations in the
amplitude of a sine wave. L-ASK signals, with L denoting the possible amplitude values, can be
generated by product modulation, that is, by multiplying the L-PAM signal carrying the data
with a sine wave, usually denoted as carrier. The general expression of an L-ASK modulated
signal is given by:

[e.9]

s(t) =W Z a;g(t —iT) cos(2m fot), (7.1)

1=—00

where
o 1) represents the carrier amplitude;
e a; represents the generic symbol;

e ¢(t) is the waveform associated to each symbol,

T is the time interval between a symbol and the following one;

fo is the carrier frequency.

83

Raspberry Pi2 - TLC

In this chapter we describe the Simulink models for the hardware implementation of 2-ASK
and 4-ASK transmitters.

In particular, we will firstly describe the project of the 2-ASK transmitter, in which each input
bit is mapped into a modulation symbol (for example a; € {—1,+1}), then we will introduce
the 4-ASK transmitter, in which each couple of input bits is mapped over L = 4 symbols (for
example a; € {—1, —%, %, +1}).

Each project requires the carrier to be generated externally, through a signal generator. The
constraints imposed by the limited band (|0 20 kHz|) of the adopted DAC (see Chapter 2)
obviously influence the choice of the carrier frequency and the signal bandwidth: the first is of
the order of 15 kHz, the second of few kHz.

7.1 Equipment required for this experience

The experimental activity described in this chapter requires a signal generator, an oscilloscope
and the following equipment:

eNr.1 Raspberry Pi2 (Fig.7.1(a)) oNr.1 USB-micro USB cable (Fig.7.1(b))
eNr.1 Micro SD memory card (Fig.7.1(c)) eNr.1 USB-LAN adapter (Fig.7.1(d))
eNr.1 Network cable (Fig.7.1(e)) oNr.1 External audio card (Fig.7.1(f))

oeNr.1 8.5mm-RCA jack cable (Fig.7.1(g)) eNr.2 BNC-RCA adapter (Fig.7.1(h))

-

(b) USB-micro USB (c¢) Micro SD memory (d) USB to LAN
cable card adapter

\\
(0
(e) LAN cable (f) External au- (2) 3.5mm-RCA (h) RCA-BNC
dio card stereo jack cable adapter

Figure 7.1: Equipment

G. Pasolini, A. Bazzi, M. Mirabella 84 Stmulink Defined Radio

Raspberry Pi2 - TLC

7.2 2-ASK transmitter

The Simulink model for implementing a 2-ASK transmitter on a Raspberry Pi2 board is shown
in Fig.7.2. Fig.7.3 shows, instead, the interconnections among the different devices constituting

the workstation.

Raspberry Pi system input
RASFBERRYFI AGC - Automatic Gain Control Raspberry Pi output
el Selact .
£ % Gt I cemen |
v e T p—— Ere Convert ﬁ ‘ i)
e Selecter Data Type Conversion2
Matr
x e ALSA Audio Flayback
Product
Baseband Modulation - Pulse Amplitude Modulation - 2-PAM Control LED
,—I RASFBERRYFI
Bemoaulli 2.PAM ~
Canvert
S = = = = W
Bermoul Binary TFAT i Raed Cozine Fike Data Type Canvarsion| edO (Green)
Generater Moculgar mag Trans mit Fiter Generator TED
Baseband

Figure 7.2: 2-ASK transmitter: Simulink model

Waveform Generator

Raspberry Pi2

3.5mm Jack

audio - 2 RCA Oscilloscope

NG
+——U@yJ-'RCA-BNC Connector

Figure 7.3: Raspberry Pi2’s Input/Output connection scheme

In order to make the scheme shown in Fig.7.2 as clear as possible, six macroblocks have
been highlighted: Baseband Modulation, Raspberry Pi system input, Product, AGC-

G. Pasolini, A. Bazzi, M. Mirabella 85 Stmulink Defined Radio

Raspberry Pi2 - TLC

Automatic Gain Control, Raspberry Pi output and Control LED'.

7.2.1 Baseband Modulation

The Baseband Modulation macroblock is the 2-PAM modulator described in Section 6.2. Its
elementary blocks Bernoulli Binary Generator, M-PAM Modulator Baseband, Complex
to Real-Imag and Raised Cosine Transmit Filter have been described in Sections 6.3.1,
6.3.2, 6.3.3 and 6.3.4 together with the corresponding configurations, that are unchanged in this
project.

The 2-PAM signal generated by this macroblock modulates the carrier, which is the output
of the Raspberry Pi system input macroblock.

7.2.2 Raspberry Pi system input

The Raspberry Pi system input macroblock receives a sinusoid (the carrier), generated by
an external signal generator, and adapts it to the format required by the subsequent block. This
macroblock, in particular, converts the stereo signal, at the ALSA Audio Capture’s output,
into a mono signal, through the Multiport Selector block, and the int16 format into a double
format, by means of the Data Type Conversion block.

7.2.3 Product

The Product block simply performs the multiplication between the carrier, outputting from the
Raspberry Pi system input block, and the modulating signal, outputting from the Baseband
Modulation block. The Product block acts, in other words, as a mizer, performing a product
modulation.

7.2.4 Max-Divide-Gain (Automatic Gain Control)

The Max-Divide-Gawn blocks, performing the gain automatic gain control, are described in
Section 6.3.5. The project here considered adopts the same configuration shown in Fig.6.10 and
in Fig.6.11.

7.2.5 Raspberry Pi output

The Raspberry Pi output macroblock represents the Raspberry Pi’s output port. Its elemen-
tary blocks Data Type Conversion, Matriz Concatenate and ALSA Audio Playback
have been described in Sections 4.3.2, 4.3.3 and 4.3.4.

7.2.6 Control LED

The only aim of the Control LED macroblock is to intermittently turn on and off the Raspberry
Pi2’s led during the execution of the project, visually confirming the that the project is running.
It has been discussed in Section 4.2.3.

!The Control LED macroblock has been discussed in Section 4.2.3. In the following, therefore, the details
of its functioning will not be provided any more.

G. Pasolini, A. Bazzi, M. Mirabella 86 Stmulink Defined Radio

Raspberry Pi2 - TLC

7.3 Elementary blocks used

The list of the elementary blocks used for the project realization is provided hereafter, along
with the reference to the sections in which their functioning is described.

e Bernoulli Binary Generator (Section 6.3.1) eData Type Conversion (Section 4.3.2)
e M-PAM Modulator Baseband (Section 6.3.2) eProduct (Section 7.3.8)

eComplez to Real-Imag (Section 6.3.3) eMazx - Divide - Gain (Section 6.3.5)
eRaised Cosine Transmit Filter (Section 6.3.4) eMatriz Concatenate (Section 4.3.3)
e ALSA Audio Capture (Section 5.3.1) e ALSA Audio Playback (Section 4.3.4)

e Multiport Selector (Section 7.3.6)

7.3.1 Bernoully Binary Generator

The Bernoully Binary Generator block is described in Section 6.3.1. It represents the binary
information source. Its task is to produce an output random sequence of independent bits with
Bernoulli statistics. For the current project this block adopts the same configuration shown in

Fig.6.4, that entails a bit rate B, = 2300 = 2400 %L,

7.3.2 M-PAM Modulator Baseband

The M-PAM Modulator Baseband block is described in Section 6.3.2. It converts the input
bits € {0, 1} into 2-PAM symbols € {-1, 1}. For the current project this block adopts the same
configuration shown in Fig.6.5.

As recalled in Section 6.3.2, despite the fact that 2-PAM symbols are purely real quantities,
the M-PAM Modulator Baseband block generates each of them in the complex format,
associating to each symbol an imaginary component with null value (e.g., [..., 1440, —1+710, ...]).
A Complex to Real-Imag block is thus needed in order to remove the imaginary components.

7.3.3 Complex to Real-Imag

The Complex to Real-Imag block is described in Section 6.3.3. Its task is to remove the
symbols’ imaginary component. For the current project this block adopts the same configuration
shown in Fig.6.7.

7.3.4 Raised Cosine Transmit Filter

The Ratsed Cosine Transmait Filter block is described in Section 6.3.4. For the current
project this block adopts the same configuration shown in Fig.6.8.

7.3.5 ALSA Audio Capture

The ALSA Audio Capture block is described in Section 5.3.1. For the current project this
block adopts the same configuration shown in Fig.5.4.

G. Pasolini, A. Bazzi, M. Mirabella 87 Stmulink Defined Radio

Raspberry Pi2 - TLC

o Function Block Parameters: Multiport Selector
Multiport Selector (mask) (link)

Output specified rows or columns to one or more output ports. The
number of output ports is determined by the number of index vectors, each
specified as a separate vector entry in a cell array. Indices are 1-based
and need not be unique.

Parameters
Select: | Columns -

Indices to output:
{2}

Invalid index: | Clip Index -

J Cancel Help Apply

Figure 7.4: Configuration window of the Multiport selector block

7.3.6 Multiport selector

The Multiport selector block receives an input stereo signal, that is, a two-channel signal
produced by the ALSA Audio Capture block, and selects only one of the channels, producing
an output mono signal.

In the configuration window shown in Fig.7.4, the only relevant parameter is Indices to output,
that is set at 2 in order to select the second channel only.

7.3.7 Data Type Conversion

The Data Type Conversion block is described in Section 4.3.2. It converts an input signal of
any Simulink data type to the data type specified in its configuration window.

For the project here considered, in particular, the Data Type Conversion block within
the Raspberry Pi system input macroblock performs the conversion from the int16 data,
supplied by the ALSA Awudio Capture block, into the double data required by the Product
block.

The Data Type Conversion2 block, within the Raspberry Pi output macroblock, per-
forms, instead, the opposite conversion, in order to adapt the signal to the int16 format required
by the ALSA Audio Playback block.

In both cases, the adopted configuration is shown in Fig.4.8.

7.3.8 Product

The Product block performs the product of its inputs, whose number is defined by the Number
of inputs parameter of the configuration window. This parameter is set at 2, as shown in Fig.7.5.

G. Pasolini, A. Bazzi, M. Mirabella 88 Stmulink Defined Radio

Raspberry Pi2 - TLC

=

[*& Function Block Parameters: Product 1
Product

Multiply or divide inputs. Choose element-wise or matrix product and
specify one of the following:

a) * or / for each input port. For example, **/* performs the operation
'ul*u2/u3d*ud'.

b) scalar specifies the number of input ports to be multiplied.

If there is only one input port and the Multiplication parameter is set to
Element-wise(.*), a single * or / collapses the input signal using the
specified operation. However, if the Multiplication parameter is set to
Matrix(*), a single * causes the block to output the matrix unchanged,
and a single / causes the block to output the matrix inverse.

Main | Signal Attributes

Number of inputs:

2

Multiplication: [Element—wise(.*) =
9 OK] ’ Cancel] l Help Apply

Figure 7.5: Product configuration window

7.3.9 Max-Divide-Gain (Automatic Gain Control)

The Maz-Divide- Gain blocks, performing the automatic gain control, are described in Section
6.3.5.

For the current project this block adopts the same configuration shown in Fig.6.10 and in
Fig.6.11.

7.3.10 Matrix Concatenate

The Matriz Concatenate block is described in Section 4.3.3. It is used to produce a two-
channel output signal (that is, a stereo signal), starting from the two mono signals at its input.
This operation is needed as the ALSA Audio Playback block, that follows the Matriz Con-
catenate block, requires a stereo input signal.

For the current project this block adopts the same configuration shown in Fig.4.9.

G. Pasolini, A. Bazzi, M. Mirabella 89 Stmulink Defined Radio

Raspberry Pi2 - TLC

7.3.11 ALSA Audio Playback

The ALSA Awudio Playback block is described in Section 4.3.4. It represents the Raspberry
Pi2’s analog output. Its task is to perform the digital-to-analog conversion of the signal and
send it to the sound card for playback. For the current project this block adopts the same
configuration shown in Fig.4.10.

7.3.12 Implementation and test of the 2-ASK transmitter

Once the Simulink project has been realized and tested through simulations, it is possible to
carry out the Deploy to Hardware procedure, as described in Section 4.4. The project will be
automatically executed as soon as the deploy procedure is completed. For the different execution
modes see Section 4.5.

Connecting the Raspberry Pi2’s input port (microphone port) to the signal generator, that
generates the carrier with a frequency around 10-15 kHz, and the output port to the oscilloscope,
according to the scheme in Fig.7.3, the 2-ASK signal can be finally observed, as shown in Fig.7.6.

11 il |

¥l= 8150ps

Figure 7.6: 2-ASK signal with 10 kHz carrier

7.4 4-ASK transmitter

The 4-ASK transmitter, shown in Fig.7.7, shows minimal variations compared to the previously
described 2-ASK transmitter (Fig.7.2). The changes concern only the Baseband Modulation
macroblock, in charge of generating the modulating signal. In the 4-ASK case, in fact, the
Baseband Modulation macroblock must generate a 4-PAM signal.

G. Pasolini, A. Bazzi, M. Mirabella 90 Stmulink Defined Radio

Raspberry Pi2 - TLC

Raspberry Pi system input

AGC - Automatic Gain Control Raspberry Pi output

RASPBERRYPI
o)

ALSA Audio Playback

YRl
!) eles -
£ Columns

Data Type Comersion

Product

Mutipart
Seledlor

ALSA Audic Cepture

-
B

Baseband Modulation - Pulse Amplitude Modulation - 2-PAM

RASPBERRYPI
=T

i Normsl

Complexto

il Raised Cazine
Moduistor < Trarsmit Fiter

I=d0 (Green)
LED)

Figure 7.7: Simulink sheme 4-ASK modulator

The 4-ASK transmitter is obtained, therefore, from the 2-ASK transmitter by simply replac-
ing the 2-ASK Baseband Modulation macroblock with the corresponding macroblock for the
4-ASK transmitter, described in Section 6.4.

7.5 Elementary blocks used

The list of the elementary blocks used for the realization of the project is provided hereafter,
along with the reference to the sections in which their functioning is described.

e Bernoulli Binary Generator (Section 6.3.1) eData Type Conversion (Section 4.3.2)
e M-PAM Modulator Baseband (Section 6.5.2) eProduct (Section 7.2.3)

eComplez to Real-Imag (Section 6.3.3) eMazx - Divide - Gain (Section 6.3.5)
eRaised Cosine Transmit Filter (Section 6.3.4) eMatriz Concatenate (Section 4.3.3)
e ALSA Audio Capture (Section 5.3.1) e ALSA Audio Playback (Section 4.3.4)

o Multiport Selector (Section 7.3.6)

You can easily see that all the blocks were previously described.

7.5.1 Implementation and test of the 4-ASK transmitter

Once the Simulink project has been realized and tested through simulations, it is possible to
carry out the Deploy to Hardware procedure, as described in Section 4.4. The project will be
automatically executed as soon as the deploy procedure is completed. For the different execution
modes see Section 4.5.

Connecting Raspberry Pi2’s input port (microphone port) to the signal generator, that gen-
erates the carrier with a frequency around 10-15 kHz, and the output port to the oscilloscope,
according to the scheme in Fig.7.3, the 4-ASK signal can be finally observed, as shown in Fig.7.6.

G. Pasolini, A. Bazzi, M. Mirabella 91 Stmulink Defined Radio

Jiidtint

Chapter 8

QPSK modulation with Raspberry Pi2

Quadrature phase shift keying (QPSK) is a digital modulation scheme in which two bits
modulate the amplitudes of two carrier waves, using the 2-ASK digital modulation scheme. The
two carrier waves differ in their phase by § and are thus called quadrature carriers, hence the
name of the scheme. The general expression of a QPSK signal is:

o0

s(t) = —= Z apig(t —iT') cos(2m fot) — % Z aqig(t —iT") sin(27 fot) (8.1)

1=—00 1=—00

where

e 1) is the carriers’ amplitude, being Vj cos(27 f,t) and Vysin(27 f,t) the two quadrature
carriers;

api € {—1,1} and aq; € {—1,1} are the in-phase and quadrature symbols;

g(t) is the waveform associated to each symbol;

fo is the carrier frequency;

T is the time interval between one symbol and the following one.

93

Raspberry Pi2 - TLC

The QPSK signal expressed in 8.1 can be be generalized to produce an M-quadrature ampli-
tude modulation (M-QAM) using two L-ASK signals to modulate the carriers, with M = L2.
8.1 Equipment required for this experience

The experimental activity described in this chapter requires an oscilloscope and the following
equipment:

eNr.1 Raspberry Pi2 (Fig.8.1(a)) eNr.1 USB-micro USB cable (Fig.8.1(b))
oNr.1 Micro SD memory card (Fig.8.1(c)) eNr.1 USB-LAN adapter (Fig.8.1(d))
eNr.1 Network cable (Fig.8.1(e)) eNr.1 External audio card (Fig.8.1(f))

oeNr.1 3.5mm-RCA jack cable (Fig.8.1(g)) eNr.2 BNC-RCA adapter (Fig.8.1(h))

' N

(b) USB-micro USB (¢) Micro SD memory (d) USB to LAN
cable card adapter

NG
\[\@
(e) LAN cable (f) External au- (2) 3.5mm-RCA (h) RCA-BNC
dio card stereo jack cable adapter

Figure 8.1: Equipment

8.2 QPSK transmitter

The Simulink model used to implement a QPSK transmitter on a Raspberry Pi2 board is shown
in Fig.8.2. Fig.8.3 shows, instead, the interconnections among the different devices constituting
the workstation.

In order to make the scheme shown in Fig.8.2 as clear as possible, four macroblocks have
been highlighted'.

!The Control LED macroblock has been discussed in Section 4.2.3. In the following, therefore, the details
of its functioning will not be provided any more.

G. Pasolini, A. Bazzi, M. Mirabella 94 Stmulink Defined Radio

Raspberry Pi2 - TLC

Baseband M odulation - Quadrature Phase Shift Keying

BEloIF Raspberry Pi output

AGC -Automatic Gain Control
Comvert -)
- £, @2 |

Dsta Type Conversiond

Ressd Cosne.
Tearsmit Fiter 1

Wetree -
e ALSA Audio Fiayback 1

S=roull Bnary TR
Gensstar? Modistor

Reatimsg

Baseband Control LED

st

T e pr— ledd (Green)
Transmit Filter Generstor ! LED1

spberry Pi2 USB Audio Card

Oscilloscope

3.5mm Jack
audio - 2 RCA
S 6
8- |rca-BNC Connector

USB to Ethernet LAN —

Figure 8.3: Raspberry Pi’s Input/Output connection scheme

The first macroblock, called BaseBand Modulation - Quadrature Phase Shift Keying,
contains all the Simulink blocks which contribute to the generation of the QPSK modulated signal
starting from the bits. The data, shaped with the appropriate filters, are then processed by the
macroblock BB to IF. At this point the signal passes through the Automatic Gain Control
AGC stage, which adapts the signal dynamic to the level required by subsequent macroblock,
called Rasberry Pi output.

8.2.1 BaseBand Modulation - Quadrature Phase Shift Keying

The macroblock in charge of producing the QPSK baseband signal starts from the bits generated
by the Bernoully Binary Generator and creates the correct phase variations that will be
added later to the carrier. The phase variations are generated by the simulink block QPSK -
Modulator Baseband, described in Section 8.3.2. Another operation made by the macroblock
is to separate the Real and Imaginary parts through the use of the Complex to Real-Imag

G. Pasolini, A. Bazzi, M. Mirabella 95 Stmulink Defined Radio

Raspberry Pi2 - TLC

Baseband Modulation - Quadrature Phase Shift Keying
g J\/\/\
Normsl
Raised Cosine
Transmit Filer1
o L Re
Bernoul lli » aPsK e
Binary
Complexto
Bermaoulli Binary QPSK ReakImag
Generator2 Maodulstor
Baseband
| /\/\/\
Marmal
Reised Cosine
Teensmit Filler3

Figure 8.4: Baseband modulation - QPSK

block. Finally, the two sequences of symbols are filtered through the raised cosine shaping filters
implemented in the Raised Cosine Transmit Filter block.

8.2.2 BB to IF

The BBtolF macroblock converts the signal from the baseband to the bandwidth centered in
the intermediate frequency frp. This operation is done through the use of a modulator the uses
two carriers in quadrature at a frequency frr = 15 kHz.

The scheme of the BBtoIF macroblock indeed corresponds to the classic quadrature modu-
lator, with a real and an imaginary part product modulated with carriers that in quadrature to
each other. Conventionally, cos(27 f;pt) is used as the carrier of the real part and —sin(27 fpt)
as the carrier of the imaginary part. The quadrature carriers are thus generated by the Cosine
Wave and Sine Wawve blocks. The two signals are then summed into a single output signal.

In Fig.8.5, the settings of the blocks used to generate the carriers are shown. In particular,
a phase shift of 7 is added to generate —sin(27 ft), whereas a phase shift of 7/2 is added to
generate cos(2m ft).

8.2.3 Max-Divide-Gain (Automatic Gain Control)
The blocks Maz-Divide-Gain that realize the automatic control gain macroblock are detailed
in Section 6.3.5. The adopted model uses the same settings as shown in Fig.6.10 and Fig.6.11.

8.2.4 Raspberry Pi output

The Raspberry Pi output macroblock, described in Section 4.2.2, represents the signal output
port. The Data Type Conversion2, Matriz Concatenate, and ALSA Audio Playback
blocks have been described in Sections 4.3.2, 4.3.3, and 4.3.4, respectively.

8.2.5 Control LED

The Control LED macroblock, that is not really part of the QPSK modulator and just used
to check that the scheme is running on the board, have been already described in Section 4.2.3.

G. Pasolini, A. Bazzi, M. Mirabella 96 Stmulink Defined Radio

Raspberry Pi2 - TLC

"4 Source Block Parameters: Cosine Wave X "4 Source Block Parameters: Sine Wave e
Sine Wave (mask) (link) Sine Wave (mask) (link)

Output samples of a sinusoid. To generate more than one sinusoid Output samples of a sinusoid. To generate more than one sinusoid
simultaneously, enter a vector of values for the Amplitude, Frequency, and simultaneously, enter a vector of values for the Amplitude, Frequency, and
Phase offset parameters. Phase offset parameters.

Main Data Types Main Data Types
Amplitude: Amplitude:
[| [|
Frequency (Hz): Frequency (Hz):
[15000 | [15000 |
Phase offset (rad): Phase offset (rad):

Lpi/2 | lpi |
Sample mode: | Discrete - Sample mode: |Discrete -
Output complexity: |Real - Output complexity: |Real -
Computation method: | Trigonometric fcn - Computation method: | Trigonometric fcn -
Sample time: Sample time:

[1/48000 | [1/48000 |
Samples per frame: Samples per frame:

2000 | 2000 |
Resetting states when re-enabled: |Restart at time zero - Resetting states when re-enabled: |Restart at time zero -
9 Cancel Help Apply Q Cancel Help Apply

(a) Settings of the phase carrier (cosine) (b) Settins of the quadrature carrier (sine)

Figure 8.5: Settings of the Cosine Wave and Sine Wave blocks

8.3 List of the adopted Simulink blocks

e Bernoulli Binary Generator (Section 8.3.1) o Max-Divide-Gain (Section 6.3.5)
e(QPSK Modulator Baseband (Section 8.3.2) eData Type Conversion (Section 4.3.2)
e Complex to Real-Imag (Section 8.3.3) o Matriz Concatenate (Section 4.3.3)

e Raised Cosine Transmit Filter (Section 6.3.4) eALSA Audio Playback (Section 4.3.4)
oSine Wave/Cosine Wave(Section 8.3.5)

8.3.1 Bernoully Binary Generator

The Bernoully Binary Generator block has been described in Section 6.3.1. It represents
the binary source of information, with the objective to generate an independent and random
sequence of bits with a Bernoulli distribution. The present model uses the settings shown in
Fig.8.6, with a bit rate B, = 45090 = 4800 [2].

8.3.2 QPSK Modulator Baseband

The QPSK Modulator Baseband block generates four different phase shifts, depending on
the value of the incoming pairs of bits. A Gray coding is used to have adjacent symbols differing
for a single bit, thus minimizing the bit error probability. The configuration of the QPSK

G. Pasolini, A. Bazzi, M. Mirabella 97 Stmulink Defined Radio

Raspberry Pi2 - TLC

"k Source Block Parameters: Bernoulli Binary Generator2 *
Bernoulli Binary Generator

Generate a Bernoulli random binary number.
To generate a vector output, specify the probability as a vector.

Parameters

Probability of a zero: |D.5| |

Initial seed: |61 |

Sample time: | 20/(2748000) |

Frame-based outputs

Samples per frame: |ZDD |

Output data type: | double -

Cancel Help Apply

Figure 8.6: Settings of the Bernoulli Binary Generator block for the QPSK model

Modulator Baseband block is shown in Fig.8.7 and the constellation

and phase values are are
presented in Fig.8.8.

"& Function Block Parameters: QPSK Modulator Baseband *
QPSK Modulator Baseband

Modulate the input signal using the quaternary phase shift keying
method.

Main Data Types

Farameters

Phase offset(rad): ||:|i,"4

Constellation ordering: |Gray -
Input type: Bit =

Viewr Constellation

Cancel Help Apply

Figure 8.7: Settings of the QPSK Modulator Baseband block

8.3.3 Complex to Real-Imag

The Complex to Real-Imag block separates the real and imaginary parts of the complex signals

provided at its input. This allows the processing of the in-phase and quadrature components.
The settings of this block are shown in Fig.8.9.

G. Pasolini, A. Bazzi, M. Mirabella 98 Stmulink Defined Radio

Raspberry Pi2 - TLC

AQ
Yy
File Edit View Inset Tools Desktop Window Help Ll
DEde | A0 EAL- |0 D
01 135° 00
[] QPSK,Gray Mapping, Ph.Off.=0.7854rad,Output DT=double
151
45°
T 01 00
@ X x
o
2 05F
! |
L -
225° 2
S
T .05 11 10
=] x x
315° Ar
51
11 10 | | | | | |
1.5 -1 0.5 0 05 1 15
In-phase Amplitude
(a) Phase values (b) QPSK constellation

Figure 8.8: Phase values and constellation of the QPSK modulation

W Function Block Parameters: Complex to Real-Imag X
Complex to Real-Imag

Output the real and/or imaginary components of the input.

Parameters
Output: |Real and imag -
J Cancel Help Apply

Figure 8.9: Settings of the Complex to Real-Imag block

8.3.4 Raised Cosine Transmit Filter

The Raised Cosine Transmit Filter block has been detailed in Section 6.3.4. The present
model adopts the same settings shown in Fig.6.8.

8.3.5 Sine Wave/Cosine Wave

The Sine Wave and Cosine Wawve blocks generate the two carriers, in quadrature to each
other, that are required to bring the signal at the intermediate frequency. The settings of these
blocks, similar to those discussed in Section 4.3.1, are shown in Fig.8.5.

8.3.6 Data Type Conversion

The Data Type Conversion block has been shown in Section 4.3.2. It converts the input data
to the required type. This block autonomously inherits the correct input and output types as a
function of the connected blocks.

G. Pasolini, A. Bazzi, M. Mirabella 99 Stmulink Defined Radio

Raspberry Pi2 - TLC

8.3.7 Max-Divide-Gain (Automatic Gain Control)

The Max-Divide-Gain blocks, that realize the automatic gain control macroblock, have been
discussed in Section 6.3.5. The present model adopts the same settings as those shown in Fig.6.10
and Fig.6.11.

8.3.8 Matrix Concatenate

The Matriz Concatenate block has been detailed in Section 4.3.3. It is used to duplicate the
same signal over two channels, an operation that is necessary to provide a stereo-signal to the
ALSA Audio Playback block. The present model adopts the same settings as those that are
shown in Fig.4.9.

8.3.9 ALSA Audio Playback

The ALSA Audio Playback block has been discussed in Section 4.3.4. It represents the DAC
converter of the Raspberry Pi2, thus generating the analog output signal to be provided to the
headphone connector. The present model adoptts the same settings as those shown in Fig.4.10.

8.3.10 Implementation and test of the QPSK transmitter

Once the model has been created in Simulink and its correct operations have been tested through
simulations, the deploy to hardware process is performed, as detailed in Section 4.4. With the
connections shown in Fig.8.3, the output signal can be checked on the oscilloscope, as shown in
Fig.8.10, and on the spectrum analyzer, as shown in Fig.8.11

Figure 8.10: QPSK signal

G. Pasolini, A. Bazzi, M. Mirabella 100 Stmulink Defined Radio

I DWF 1 - Spectrum Analyzer

Mswe @ |

File Edit Control View Settings Window Help
[Export | [iy, Measurements ¥ Markers Q, Add Zoom | (% Options

- [m} X

J.| Frequency Range

mn
| \\N"hl‘;"‘d’“’{

Running g [[71][T2] Maximum: 100.00kHz REBW: 2441 Hz 100 kHzto 244.2 Hz
1048V T T T T T T —
3 lcener 15KH
Span 20kHz
e Track Disabled
1 Hlee N
-36dBv Units dBV -
| G e T
nl"l(lM’ Range |IELEE |-
|
- LR et |
' l [Trace 1 B 00
-62dBV | Channel 1 -
‘ 4 | 1 Trace2 A 3
-75dBV } |
I

Analog |Cs provided by

u ANALOG
DEVICES

Figure 8.11: QPSK spectrum

Chapter 9

2-FSK modulation with Raspberry Pi2

USB Audio Card

s i M —— — =
— o & b m" - rE

l Oscilloscope

Binary FSK (Frequency Shift Keying), usually referred to simply as 2-FSK, is a frequency
modulation scheme in which the digital information is transmitted by shifting the frequency of
a continuous carrier in a binary manner, so that one frequency or the other is used depending

on the symbol being transmitted.
In the general case of FSK modulation with L levels (L-FSK), each symbol a;, carrying the
information of logy L bit, is associated to the corresponding frequency shift, according to the

expression:

(9.1)

s(t) = Vpcos

)

2 (fo +Af Z airect(t —TZT)> t

1=—00

where
e 1|y represents the carrier amplitude;
e fo is the carrier frequency;

Af is the elementary frequency shift with respect to the carrier;

e a; represents the generic symbol (in the case L = 4, for example, a; € {—3,—1,1,3});

T is the time interval between one symbol and the following one;

rect(t/T") is the square pulse equal to 1 in the interval [—%, %] and 0 elsewhere.

103

Raspberry Pi2 - TLC

9.1 Equipment required for this experience

The experimental activity described in this chapter requires an oscilloscope and the following
equipment:

oNr.1 Raspberry Pi2 (Fig.9.1(a)) oNr.1 cavo USB-micro USB (Fig.9.1(b))
eNr.1 Micro SD memory card (Fig.9.1(c)) eNr.1 USB-LAN adapter (Fig.9.1(d))
eNr.1 Network cable (Fig.9.1(e)) eNr.1 External audio card (Fig.9.1(f))

oN1.2 3.5mm-RCA jack cable (Fig.9.1(g)) eNr.2 BNC-RCA adapters (Fig.9.1(h))

&~ =

(b) USB-micro USB (c¢) Micro SD memory (d) USB to LAN
cable card adapter

_
“
()
(e) LAN cable (f) External au- (g) 3.5mm-RCA (h) RCA-BNC
dio card stereo jack cable adapter

Figure 9.1: Equipment

9.2 2-FSK transmitter

In this chapter the Simulink model for the hardware implementation of a 2-FSK transmitter
is introduced. With reference to eq.(9.1), in particular, the following settings are adopted:
Vo=2Y—1,0a;€{-1,1}, Af =24 kHz, fo =72kHz and T = ;20 s.

As for the bit-frequency correspondence, a sine wave with frequency f1 = 4.8 kHz is associated
to the bit 1, whereas a sine wave with frequency fo = 9.6 kHz is associated to the bit 0.

In order to limit the signal bandwidth, it is advisable that the transitions between the two
sine waves occur with phase continuity: The choice of f; and fo, together with the choice of the
bit rate B, = 4850 = 2400 [%4], guarantee this condition to be fulfilled. The duration T' = 3-
of a bit is, in fact, a multiple of the periods of the two sine waves used by the modulation.

In this project the two sine waves are generated within the model, with no need for external

signal generators.

G. Pasolini, A. Bazzi, M. Mirabella 104 Stmulink Defined Radio

Raspberry Pi2 - TLC

Raspberry Pi2 USB Audio Card

Oscilloscope

3.5mm Jack 7

audio - 2 RCA ~
S0

&ﬁ- RCA-BNC Connector

Figure 9.2: Connection scheme

The Simulink model of the 2-FSK transmitter is shown Fig.9.3, whereas Fig.9.2 shows the
interconnections among the different devices constituting the workstation.

Frequency Modulation

Raspberry Pi output

RASPBERRYPI

o .
2

Data Type Conversion2 o
Concatenate ALSA Audio Playback

Baseband Modulation - Pulse Amplitude M odulation - 2-PAM

e L
Bemoulli 2PAM Re(u) X[n/20] B
Binary N
Complexto
Bemouli Binary AT o o T Add
Gernerator Moduiator

Interpolation
Baseband

Gontrol LED
RASPBERRYPI

W

Pulse Data Type Corversioni led0 (Green)
Generator L[ED

Sine Wave -1

Figure 9.3: 2-FSK Simulink transmitter scheme

In order to make the scheme in Fig.9.3 as clear as possible, four macroblocks have been

highlighted: Baseband Modulation, Frequency Modulation, Raspberry Pi output and
Control LED"'.

!The Control LED macroblock has been discussed in Section 4.2.3. In the following, therefore, the details
of its functioning will not be provided any more.

G. Pasolini, A. Bazzi, M. Mirabella 105 Stmulink Defined Radio

Raspberry Pi2 - TLC

Frequency Modulation
‘J-LIDSF‘
Sine Wave 1
s /‘ %
Saturation 1 RIELET

Add

=f4’b—’x

Saturation -1 Gain Prodoer

IJ_L[DSP
W/

Sine Wave -1

Figure 9.4: Frequency Modulation macroblock

9.2.1 Baseband Modulation

The Baseband Modulation macroblock is the 2-PAM modulator described in Section 6.6.1,
whose task is to generate a 2-PAM signal with square pulses. Its elementary blocks Bernoull:
Binary Generator, M-PAM Modulator Baseband, Complex to Real-Imag and FIR
interpolation are described in Sections 6.3.1, 6.3.2, 6.3.3 and 6.6.1, along with the corresponding
configurations, that are unchanged for the current project.

The Baseband Modulation output is, therefore, a 2-PAM signal with square pulses, like
the one shown in Fig.6.24.

9.2.2 Frequency Modulation

The Frequency Modulation macroblock implements the 2-FSK modulator, which is the core
of the whole project.

Depending on the current input symbol a; € {—1,1}, the Frequency Modulation mac-
roblock (Fig.9.4) outputs either the sine wave with frequency f; = 4.8 kHz, generated by the
Sine Wave 1 block, or the sine wave with frequency fo = 9.6 kHz, generated by the Sine
Wave -1 block.

The two Saturation blocks work as “switches”, controlled by the symbols a;, enabling only
one of the two sine waves to reach the macroblock’s output: When the input symbol is 1, the
Saturation 1 block outputs the value 1; with input -1, on the other hand, the output value
is 0. This block controls the output of the Product 1 block, producing the 4.8 kHz sine wave

G. Pasolini, A. Bazzi, M. Mirabella 106 Stmulink Defined Radio

Raspberry Pi2 - TLC

generated by Sitn Wave 1 in case of symbol 1, or a null signal, in case of symbol -1.

The blocks sequence Saturation -1, Gain, Sin Wave -1 and Product -1 works in a
perfectly specular way: In case of input symbol -1, the 9.6 kHz sine wave generated by Sin
Wave 2 is enabled at the Product -1 output; in case of symbol 1, on the other hand, the
output of the Product -1 block is null.

It follows that, depending on the symbol to transmit, one of the Add block’s inputs is null
and the other one carries the sine wave associated to the symbol. The Add block’s output, then,
reproduces the sine wave to transmit.

Table 9.1 shows the outputs of the different blocks composing the Frequency Modulation
macroblock for the possible values of the input symbol.

a; Saturation 1 | Saturation -1 Product 1 Product -1 Add
input output output output output output
sine at 4.8 kHz 0 sine at 4.8 kHz

-1 0 -1 sine at 9.6 kHz | sine at 9.6 kHz

1 1 0
0

Table 9.1: Frequency Modulation macroblock

9.2.3 Raspberry Pi output

The Raspberry Pi output macroblock is described in Section 4.2.2. It represents the Raspberry
Pi2’s analog output. This macroblock adapts the signal at its input port to the format required
by the Raspberry Pi2’s DAC, represented by the A LSA Audio Playback block. For the current
project its elementary blocks adopt the same configuration described in Section 4.3.2, 4.3.3 and
4.3.4.

9.2.4 Control LED

The only aim of the Control LED macroblock is to intermittently turn on and off the Raspberry
Pi2’s led during the execution of the project, visually confirming the that the project is running.
This macroblock is discussed in Section 4.2.3.

9.3 Elementary blocks used

The list of the elementary blocks used for the project realization is provided hereafter, along
with the reference to the sections in which their functioning is described.

e Bernoulli Binary Generator (Section 6.3.1) eGain (sect.9.3.7)
e M-PAM Modulator Baseband (Section 6.3.2) eProduct (Section 9.3.8)

eComplex to Real-Imag (Section 6.3.3) e Add (Section 9.3.9)

o 'IR Interpolation (Section 6.6) eData Type Conversion (Section 4.3.2)
eSin Wave (Section 9.3.5) e Matriz Concatenate (Section 4.3.3)
eSaturation (Section 9.3.6) o ALSA Audio Playback (Section 4.3.4)

G. Pasolini, A. Bazzi, M. Mirabella 107 Stmulink Defined Radio

Raspberry Pi2 - TLC

9.3.1 Bernoully Binary Generator

The Bernoully Binary Generator block is described in Section 6.3.1. It represents the binary
information source. Its task is to produce an output random sequence of independent bits with
Bernoulli statistics. For the current project this block adopts the same configuration shown in
Fig.6.4, that entails a bit rate B, = % = 2400 %.

9.3.2 M-PAM Modulator Baseband

The M-PAM Modulator Baseband block is described in Section 6.3.2. It converts the input
bits € {0, 1} into 2-PAM symbols € {-1, 1}.

For the current project this block adopts the same configuration shown in Fig.6.5.

As recalled in Section 6.3.2, despite the fact that 2-PAM symbols are purely real quantities,
the M-PAM Modulator Baseband block generates each of them in the complex format,
associating to each symbol an imaginary component with null value (e.g., [..., 1440, =1 4710, ...]).
A Complex to Real-Imag block is thus needed in order to remove the imaginary components.

9.3.3 Complex to Real-Imag

The Complex to Real-Imag block is described in Section 6.3.3. Its task is to remove the
symbols’ imaginary component.
For the current project this block adopts the same configuration shown in Fig.6.7.

9.3.4 FIR Interpolation

The FIR Interpolation block is described in Section 6.6.1. This block acts as a square pulse
shaping filter. Its output port generates a 2-PAM signal with square pulses, as the one shown in
Fig.6.24.

For the current project this block adopts the same configuration shown in Fig.6.23.

9.3.5 Sine Wave

The Sine Wawve block is described in Section 4.3.1. In the current project, the two Sine Wave
blocks generates the two sine waves at 4.8 kHz and 9.6 kHz, associated to the symbols 1 and -1,
respectively.

Their configuration windows are shown in Fig.9.5(a) and in Fig.9.5(b).

9.3.6 Saturation

The Saturation block limits its output signal within the range defined by the Upper limit and
Lower limit parameters of its configuration window. In particular, when the input signal exceeds
Upper limit the output is saturated at such value. On the other hand, the output is saturated
at Lower limit when the input signal is under that value.

The configuration windows for the Saturation 1 and Saturation -1 blocks used in this
project are shown in Fig. 9.6(a) and in Fig.9.6(b), respectively.

G. Pasolini, A. Bazzi, M. Mirabella 108 Stmulink Defined Radio

Raspberry Pi2 - TLC

ﬁj Source Block Parameters: Sine Wave 1 ﬂ ﬁl Source Block Parameters: Sine Wave -1 ﬂ
Sine Wave (mask) (link) Sine Wave (mask) (link)
Output samples of a sinusoid. To generate more than one sinusoid Output samples of a sinuscid. To generate more than one sinusoid
simultaneously, enter a vector of values for the Amplitude, Frequency, simultaneously, enter a vector of values for the Amplitude, Frequency,
and Phase offset parameters. and Phase offset parameters.
Main Data Types Main Daiglypeg
Amplitude: Amplitude:
(27~15)-1 (2715)-1
Frequency (Hz): Frequency (Hz):
4800 9600
Phase offset (rad): Phase offset (rad):
0 0
Sample mode: [Discrete '] Sample mode: [Discrete ']
Qutput complexity: [Real '] Output complexity: [Real ']
Computation method: ITrigonometric fen '] Computation method: ITrigonometric fen ']
Sample time: Sample time:
1/48000 1/48000
Samples per frame: Samples per frame:
1000 1000
Resetting states when re-enabled: |Restart at time zero b Resetting states when re-enabled: Restart at time zero -
(2] [OK] I Cancel] [Help l Apply Q9 E 0K] [Cancel l [Help l Apply

(a) Configuration window of the Sin Wave 1 block (b) Configuration window of the Sin Wawve -1 block

Figure 9.5: Sin Wawve blocks’ configuration windows

r N
"4 Function Block Parameters: Saturation 1 ﬂ [*8 Function Block Parameters: Saturation -1 ﬂ
Saturation Saturation
Limit input signal to the upper and lower saturation values. Limit input signal to the upper and lower saturation values.
Main | Signal Attributes Main | Signal Attributes
Upper limit: Upper limit:
1 0
Lower limit: Lower limit:
0 -1
Treat as gain when linearizing Treat as gain when linearizing
Enable zero-crossing detection Enable zero-crossing detection
7} [o [cancel |[welp || apply Q [ok |[cancel |[Heip || Apply
| \

(a) Configuration window of the Saturation 1 block (b) Configuration window of the Saturation -1
block

Figure 9.6: Saturation blocks’ configuration windows

9.3.7 Gain

The Gain block reproduces, as output signal, the input signal multiplied by the Gain factor
defined in its configuration window. The configuration adopted in the current project is shown
in Fig.9.7.

G. Pasolini, A. Bazzi, M. Mirabella 109 Stmulink Defined Radio

Raspberry Pi2 - TLC

"4 Function Block Parameters: Gain lﬁj
Gain
Element-wise gain (y = K.*u) or matrix gain (y = K*u or y = u*K).
Main | Signal Attributes | Parameter Attributes |
Gain:
Multiplication: [Element—wise(K.*u) w7
2 [OK l [Cancel] [Help] Apply

Figure 9.7: COnfiguration window of the Gain block

9.3.8 Product

The Product block performs the product of its inputs, whose number is defined by the Number
of inputs parameter requested by the configuration window. This parameter is set at 2, as shown
in Fig.7.5.

9.3.9 Add

The Add block performs the sum or the difference of its inputs. In the this case the block must
sum up two inputs, that’s why the List of signs field of its configuration window is set as “++7,
as shown in Fig.9.8.

9.3.10 Data Type Conversion

The Data Type Conversion block is described in Section 4.3.2. It converts an input signal of
any Simulink data type to the data type specified in its configuration window.

For the project here considered, in particular, the Data Type Conversion block performs
the conversion into the int16 format, as required by the block ALSA Audio Playback. For
the current project this block adopts the same configuration shown in Fig.4.8.

9.3.11 Matrix Concatenate

The Matriz Concatenate block is described in Section 4.3.3. It is used to produce a two-
channel output signal (that is, a stereo signal), starting from the two mono signals at its input.
This operation is needed as the ALSA Audio Playback block, that follows the Matriz Con-
catenate block, requires a stereo input signal. This block adopts the same configuration shown
in Fig.4.9.

G. Pasolini, A. Bazzi, M. Mirabella 110 Stmulink Defined Radio

Raspberry Pi2 - TLC

["& Function Block Parameters: Add ﬁ

Sum

Add or subtract inputs. Specify one of the following:

a) string containing + or - for each input port, | for spacer between
ports (e.g. ++|-|++)

b) scalar, »= 1, specifies the number of input ports to be summed.
When there is only one input port, add or subtract elements over all
dimensions or one specified dimension

Main | Signal Attributes

Icon shape: [rectangular ~

List of signs:

++

J [OK H Cancel H Help l Apply

Figure 9.8: Configuration window of the Add block

9.3.12 ALSA Audio Playback

The ALSA Awudio Playback block is described in Section 4.3.4. It represents the Raspberry
Pi2’s analog output. Its task is to perform the digital-to-analog conversion of the signal and send
it to the sound card for playback.

For the current project this block adopts the same configuration shown in Fig.4.10.

9.3.13 Implementation and test of the 2-FSK transmitter

Once the Simulink project has been realized and tested through simulations, it is possible to
carry out the Deploy to Hardware procedure, as described in Section 4.4. The project will be
automatically executed as soon as the deploy procedure is completed. For the different execution
modes see Section 4.5.

Connecting the Raspberry Pi2’s analog output to the oscilloscope, according to the scheme
in Fig.9.2, the 2-FSK signal can be finally observed, as shown in Fig.9.9.

G. Pasolini, A. Bazzi, M. Mirabella 111 Stmulink Defined Radio

LAV R AR G0N

Chapter 10

Raspberry Pi2 as an OFDM
transmitter

AANYYN A

In this chapter we will describe the implementation of an Orthogonal Frequency Division
Multiplexing (OFDM) transmitter on a Raspberry Pi2 board.

The OFDM modulation is a digital modulation scheme that divides the transmission among
N different carriers at adjacent frequencies, usually called subcarriers, that are transmitted
simultaneously.

In the following we will describe the implementation of an OFDM transmitter operating with
N = 64 subcarriers, N,, = 48 of which actually used to transmit the digital data.

The OFDM modulator described in the following does not implement the cyclic prefix, that
will be introduced in future versions.

10.1 Equipment required for the realization of this experience

The experimental activity described in this chapter requires a spectrum analyser and the following
equipment:

113

Raspberry Pi2 - TLC

oNr.1 Raspberry Pi2 (Fig.10.1(a)) oNr.1 USB-micro USB cable (Fig.10.1(b))
eNr.1 micro SD memory card (Fig.10.1(c)) oNr.1 USB-LAN adapter (Fig.10.1(d))
eNr.1 Network cable (Fig.10.1(e)) eNr.1 External audio card (Fig.10.1(f))

oeNr.1 3.5mm-RCA jack cable (Fig.10.1(g)) eNr.1 BNC-RCA adapter (Fig.10.1(h))

&~

(a) Raspberry Pi2 (b) USB-micro USB (c¢) Micro SD memory (d) USB to LAN
cable card adapter

N
)
()
(e) LAN cable (f) External au- (g) Stereo 3.5mm- (h) RCA-BNC
dio card RCA jack cable adapter

Figure 10.1: Equipment

10.2 Raspberry Pi2 as OFDM transmitter

In Fig.10.2 the interconnection of the different devices composing the workstation is represented.
The model of the OFDM transmitter is shown, instead, in Fig.10.3.

In order to be as clear as possible, seven macroblocks have been highlighted in the scheme
shown in Fig.10.3: Baseband Modulation, OF DM, Upsampling, BBtolF, AGC-Automatic
Gain Control, Raspberry Pi output and Control LED', described below.

10.2.1 Baseband Modulation

The Baseband Modulation macroblock generates real symbols a; € {—1, 1}, starting from
the bits produced by the Bernoully Binary Generator block. Such symbols will be used to
modulate the subcarriers of the OFDM signal; as the alphabet used has just two symbols, the
modulation adopted for the subcarriers is 2-ASK.

The M-PAM Modulator Baseband and Complex to Real-Imag elementary blocks have
been described in Sections 6.3.2 and 6.3.3, where they are used for the generation of a 2-PAM
signal. The corresponding configurations do not change for the project here considered.

!The Control LED macroblock has been discussed in Section 4.2.3. In the following, therefore, the details
of its functioning will not be provided any more.

G. Pasolini, A. Bazzi, M. Mirabella 114 Stmulink Defined Radio

Raspberry Pi2 - TLC

Raspberry Pi2

USB Cable

USB Audio Card

3.5mm Jack
audio - 2 RCA

C\
N

USB to Ethernet LAN

Spectrum Analyzer

-

Figure 10.2: Connection scheme

Baseband Modulation - Pulse Amplitude Modulation 2-PAM

Bemoulli 2-PAM Re(u)’
Binary
Bernouli Binary VPAM
et i Real-Imag1
Baseband
BBtolF
OFDM Upsampling
Cosine Wave
Constantl
FDATool FDATool

Select To |

Rows IFFT Frame > 12 T10 — Complexto
Real-lmag

Pad1 IFFT1 Frame Conversion Upsample2 Upsample3
Digial Digital
i. Fiker Design2 Filter Diesign3
Product!
Multiport Matrix Sine Wave
Selector2 Concatenate2
Raspberry Pi output
RASPBERRYPI

Figure 10.3: Simulink model of the OFDM modulator

" P

Matrix
ALSA Audio Playback

Data Type Conversion2
Concatenats1

AGC - Automatic Gain Control

Control LED

RASPBERRYPI
T

Data Type Conversiont

Divide
I Bl e 11
led0 (Green)
LED

Pulse
Generator

that will be discussed in the following section.

On the contrary, the Bernoulli Binary Generator block requires a specific configuration,

G. Pasolini, A. Bazzi, M. Mirabella

115

Stmulink Defined Radio

Raspberry Pi2 - TLC

"l Source Block Parameters: Bernoulli Binary Generator >

Bernoulli Binary Generator

Generate a Bernoulli random binary number.
To generate a vector output, specify the probability as a vector.

Parameters

Probability of a zero: |IZI.5 |

Initial seed: |61 |

Sample time: | (20/48000)*64/48 |

Frame-based outputs

Samples per frame: |4E= |

Output data type: double -

Cancel Help Apply

Figure 10.4: Configuration window of the Bernoulli Binary Generator block

Bernoulli Binary Generator

The Bernoulli Binary Generator block represents, as in the previous cases, the binary in-
formation source. With reference to the configuration window shown in Fig.10.4, the bits are
generated at a rate of one bit every Sample time seconds and are grouped, before passing them
to the following block, in frames with length equal to Sample per frame.

In this particular case, the value assigned to the Sample time parameter must fulfil the
condition:

Upsampling factor

S le T4 N
ample Time = C—
p bsympol - Audio Sampling Frequency N, ’

(10.1)

where

e Upsampling factor represents the upsampling factor introduced by the Upsampling mac-
roblock, that we will discuss in section 10.2.3;

o Audio Sampling Frequency is the sampling frequency defined in the ALSA Audio Play-
back block (section 4.3.4);

® bsymbol = logy M is the number of bits used to generate modulation symbols for each
subcarrier, with M denoting the number of symbols of the adopted modulation;

e N is the total number of subcarriers used;

G. Pasolini, A. Bazzi, M. Mirabella 116 Stmulink Defined Radio

Raspberry Pi2 - TLC

e N, is the number of subcarriers actually used to transmit data.

In this specific case, as Audio Sampling Frequency—48000, Upsampling factor—20, bsympor =
logo M = 2, N = 64 and N,=48, it results Sample Time = % . %.

The Sample per Frame parameter must be assigned a value that corresponds to the number
N, of subcarriers actually used to transmit data. In this specific case, therefore, Sample per
Frame=48.

The remaining parameters of the Bernoulli Binary Generator configuration window,
whose meaning was discussed in paragraph 6.3.1, are defined as shown in Fig.10.4.

The output of the Baseband Modulation macroblock is thus a sequence of frames, one
following the other, containing the 48 symbols that modulate the N, = 48 useful subcarriers, as

shown in (10.2):

[isymbol#l, symbol#2, ..., symbol#48l] ,

(10.2)

frame

10.2.2 OFDM

Starting from the modulation symbols a; at its input, the OFDM macroblock generates the
baseband signal corresponding to an OFDM modulation with N = 64 subcarriers, N, = 48 of
which are actually used to transmit modulation symbols (useful subcarriers) whereas the remain-
ing N, = 16 have null amplitude (15 virtual subcarriers + 1 DC subcarrier in correspondence of
the frequency zero?). In this specific case, the N = 64 subcarriers are used as follows:

e 8 virtual subcarriers (from 1 to 8) with null amplitude;

e 24 data subcarriers (from 9 to 32) with 2-ASK modulation;

e 1 DC subcarrier (number 33) with null amplitude (corresponding to the zero frequency);
e 24 data subcarriers (from 34 to 57) with 2-ASK modulation;

e 7 virtual subcarriers (from 58 to 64) with null amplitude.

In Fig.10.5 the baseband spectrum® of the signal generated by the OFDM macroblock is
shown, along with a reference number indicating the position of each subcarrier in the subcarriers’
sequence.

Denoting with F's the sampling frequency of the signal generated by the OFDM macroblock
and with Af the interval between two consecutive subcarriers, the spectral component contained
in the Nyquist band [—%, %] is represented with a continuous line, while the periodic repetitions
with period F's = NAf, caused by the discrete-time nature of the signal, are represented with
a dashed line. In Fig.10.6 the spectrum has been enriched with the indication of the symbol
number? associated to each subcarriers. A null amplitude is assigned to the remaining subcarriers

(DC and virtual).

In order to facilitate the receiver in the research of the band center, the subcarrier corresponding to the zero
frequency (in the baseband) is usually assigned a null amplitude. The acronym DC means Direct Current.

81t is obviously an ideal schematic representation.

“The symbol number € {1,2,...,48} represents the position of the symbol in the frame.

G. Pasolini, A. Bazzi, M. Mirabella 117 Stmulink Defined Radio

Raspberry Pi2 - TLC

Nygquistband

s 32| 34 57
PR T R SRR S OF O EES PO FE W EFER g RO eerY

o4& * *o—o T T
33

Fs=-NAf 128 58 64 Fs=NAf f

Figure 10.5: Signal spectrum

Nyquistband

symbol symbol
#1 #24 symbol symbol
#1 #214

S 32 34 57
PR Fe RSN S8 S EEFY PO S W TER g9 ereeTe

B - e W
33

Fs=-NAf pa-s 56 - 54 Fs=NAf f

symbol symbol

symbol symbol 425 #43

#25 #48

Figure 10.6: Signal spectrum with the symbol number associated to each subcarrier

The generation of this signal is the task of the IFFT block, that receives the N symbols
associated to all the N subcarriers (48 useful, 15 virtual and 1 DC) and produces the baseband
OFDM signal.

The IFFT block, however, needs to receive the symbols associated to the subcarriers ac-
cording to a particular order: the first symbol must be the one associated to the subcarrier
with 0 frequency, the second symbol the one associated to the subcarrier with frequency Af and
so on, until the last symbol, that must be the one associated to the subcarrier with frequency
(N — 1)Af. In other words, the order of the N = 64 symbols at the input of the IFFT block
must be the one shown in Fig.10.7, that is:

[0, symbol#25, ..., symbol#48, 0,..,0, symbol#1, ..., symbol#24].
~—~— (10.3)

15 zeros

The first step to pass from the 48 symbols frame (10.2) generated by the Baseband Mod-
ulation macroblock, to the 64 symbols frame (composed by 48 symbols-+16 zeroes) reported in
(10.3), is performed by the Multiport Selector2 block. This block splits the 48 symbols frame
(10.2) at its input into two frames containing 24 symbols each. In particular, the frame it gener-
ates at the first output port contains those symbols occupying positions 25 to 48 in the original
frame, while the frame at the second output port contains those symbols occupying positions 1
to 24 in the original frame. The corresponding settings of the block’s configuration window are
shown in Fig.10.8.

The next step consists in the construction of the frame (10.3) by inserting in the proper

G. Pasolini, A. Bazzi, M. Mirabella 118 Stmulink Defined Radio

Raspberry Pi2 - TLC

symbol symbol symbaol symbaol
#25 #48 #1 #24
34 57

9 32
PV e WEFER

&—0—8—80

58541 - B (N'i)ﬂf f

33

Figure 10.7: Signal spectrum with the symbol number associated to each subcarrier

position the 16 zeroes corresponding to the DC subcarrier and to the 15 virtual subcarrier. The
block Pad1 has the task to create a vector of 39 elements, the first 24 of which correspond to
the symbols from 25 to 48 (that is, the first output of Multiport Selector2), and the remaining
15 are 0s and represent the 15 virtual carriers. The configuration setting for this block is shown
in Fig.10.9.

In order to eventually get to the frame (10.3), the block Matriz Concatenate is used,
concatenating in a single frame its 3 inputs, corresponding to

e the constant 0, corresponding to the amplitude of the DC subcarriers;
e the frame with the symbols 25 to 48 followed by 15 zeroes, generated by Pad1 block;

e the frame with the symbols 1 to 24, provided by the second output of the Multiport
Selector2 block.

The settings of the Matrixz Concatenate block is shown in Fig.10.10.

Starting from the frame (10.3), it is finally possible to generate the baseband OFDM signal
simply using the inverse discrete Fourier transform IFFT block, that associates the input sym-
bols in the time domain to the corresponding orthogonal subcarriers in the frequency domain.
The configuration of this block is shown in Fig.10.11.

In order to keep the elaboration in frame based mode, a Frame conversion block is fi-
nally inserted, following the IFFT block. The corresponding configuration window is shown in
Fig.10.12.

10.2.3 Upsampling

The baseband signal generated by the OF DM macroblock has a sampling frequency of F's =
48000 = 2400 %. The sampling rate Samplle ~— = 4200048 — 1800 %ples chosen in the
Bernoully Binary Generator block has been, in fact, increased by a factor % by the IFFT
block, that outputs a frame of 64 elements for each frame of 48 elements received as input.

In order to modulate the baseband OFDM signal, the sampling frequency must be, therefore,
increased. It is convenient, on this regard, to increase it by a factor of 20, taking it to the value
43000 % required by Raspberry Pi2’s DAC.

The upsampling operation is performed by the sequence of blocks included in the Upsam-
pling macroblock, that performs an upsampling by a factor of 2 at first and then by a factor of

G. Pasolini, A. Bazzi, M. Mirabella 119 Stmulink Defined Radio

Raspberry Pi2 - TLC

"% Function Block Parameters: Multiport Selector2 >
Multiport Selector (mask) (link)

Output specified rows or columns to one or more output ports. The
number of output ports is determined by the number of index vectors, each
specified as a separate vector entry in a cell array. Indices are 1-based
and need not be unigue.

Parameters
Select: |Rows -

Indices to output:

{25:48,1:24 }

Invalid index: | Clip Index -

" Cancel Help Apply

Figure 10.8: Multiport Selector’s configuration window

10. The two stage procedure is convenient, compared with a single stage upsampling by a factor
of 20, because it reduces the overall computational burden.

The first stage of the Upsampling macroblock introduces a 0 between one sample and
the other of the input signal. This operation increases the sampling frequency by a factor of
2, changing it from 2400 % to 4800 M, without modifying the signal spectrum. The
following Digital Filter Design 2 filter has therefore the task to remove one periodic repetition
out of two in the signal spectrum, as shown in Fig.10.13.

The signal spectrum at the filter output shows periodic repetitions with period equal to 4800
Hz, as it is appropriate for a signal with a sampling frequency of 4800 ‘W'Zﬂ.

The next stage, with the block performing the upsampling by a factor of 10 followed by a
filter, works according to the same principle: the upsampling stage inserts nine 0Os after each
input signal sample, increasing the sampling frequency by a factor of 10, and the filter removes
9 periodic spectral repetitions out of 10, so that the first periodic repetition of the spectrum is
centred at 48000 %.

In order to properly design the filters, set F's at the new sampling frequency, assign Fpass the
upper limit of the band to be preserved and assign Fstop the value of the old sampling frequency
minus the band to be preserved.

Fig. 10.14 shows the settings of both filters.

10.2.4 BBtolF

The BBtolIF macroblock modulates the signal, translating it from baseband to intermediate fre-
quency. Such operation is performed through a quadrature modulator with internally generated
carriers at a frequency frp = 15 kHz.

G. Pasolini, A. Bazzi, M. Mirabella 120 Stmulink Defined Radio

Raspberry Pi2 - TLC

"4 Function Block Parameters: Pad1 >
Pad (mask) (link)

Append or prepend a constant value to the input along the specified
dimensions. Truncation occurs when the specified output dimensions are
shorter than the corresponding input dimensions.

Farameters

Pad over: |Columns -
Pad value source: Specify via dialog -
Pad value:

]

Output column mode: | User-specified -
Column size:

39

Pad signal at: | End v
Action when truncation occurs: | Mone 4

?) Cancel Help Apply

Figure 10.9: Pad block configuration

The BBtolF macroblock is a classic quadrature modulator, with two separate paths for the
real (in-phase) and the imaginary (quadrature) components of the signal. Each component is
upconverted by a mixer (represented by the Product block) driven by a cosine or a sine carrier,
generated by the Cosine Wave and Sine Wave blocks. Both modulated signals are then
summed up and taken out.

We conventionally use cos(27 frpt) as carrier for the in-phase signal and —sin(27 frpt) as
carrier for the quadrature signal.

Fig.10.15 shows the settings for the carriers’ generating blocks. In particular, the —sin (27 ft)
signal is generated introducing a 7 phase offset to the sin(27 ft) signal that would be generated
by default, while the cos(27 ft) is generated introducing a % phase offset.

10.2.5 Max-Divide-Gain (Automatic Gain Control)

The Mazx-Divide- Gain blocks, realizing the automatic-gain-control macroblock, are described
in Section 6.3.5. The OFDM transmitter here discussed adopts the same configuration shown in
Fig.6.10 and in Fig.6.11.

G. Pasolini, A. Bazzi, M. Mirabella 121 Stmulink Defined Radio

Raspberry Pi2 - TLC

"k Function Block Parameters: Matrix Concatenate? >
Concatenate

Concatenate input signals of the same data type to create a contiguous
output signal. Select vector or multidimensional array mode.

In vector mode, all input signals must be either vectors or one-row [1xM]
matrices or one-column [Mx1] matrices or a combination of vectors and
either one-row matrices or one-column matrices. The output is a vector if
all inputs are vectors. The output is a one-row or one-column matrix if any
of the inputs are one-row or one-column matrices, respectively.

In multidimensional mode, use 'Concatenate dimension' to specify the
output dimension along which to concatenate the input arrays. For
example, to concatenate the input arrays vertically or horizontally, specify 1
or 2, respectively, as the concatenate dimensions.

Parameters

Mumber of inputs:

3

Mode: | Multidimensional array -

Concatenate dimension:

1

\) Cancel Help Apply

Figure 10.10: Configuration window of the Matrixz Concatenate block

10.2.6 Raspberry Pi output

The Raspberry Pi output macroblock represents the signal output port. The elementary
blocks Data Type Conversion, Matriz Concatenate and ALSA Audio Playback are
described in Sections 4.3.2, 4.3.3 and 4.3.4.

10.2.7 Control LED

The Control LED macroblock has the only aim to intermittently turn on and off the Raspberry
Pi2’s led during the model execution. Its functioning is described in Section 4.3.6.
10.3 Elementary blocks used

The list of the elementary blocks used for the project realization is provided hereafter, along
with the reference to the sections in which their functioning is described.

G. Pasolini, A. Bazzi, M. Mirabella 122 Stmulink Defined Radio

Raspberry Pi2 - TLC

"% Function Block Parameters: IFFT1 =
IFFT

Compute the inverse fast Fourier transform (IFFT) across the first dimension of the input.

When you set the 'FFT implementation' parameter to 'Radix-2', the FFT length must be a power of two.

Main Data Types
Parameters

FFT implementation: Auto =

[mput is in bit-reversed order

[mput is conjugate symmetric

[pivide output by FFT length

Inherit FFT length from input dimensions

9] Cancel Help Apply

Figure 10.11: Configuration window of the IFFT block

@ Function Block Parameters: Frame Conversionl &J

Frame Conversion

Set sampling mode of the output signal.

Parameters

[] Inherit output sampling mode from <Ref> input port

Sampling mode of output signal; ’Frame—based w7

(9] OK H Cancel H Help Apply

Figure 10.12: Configuration window of the To Frame block

G. Pasolini, A. Bazzi, M. Mirabella 123 Stmulink Defined Radio

Raspberry Pi2 - TLC

Filter

AN

—

—,

~|

—

I
2400

4800

7200

I
9600

Figure 10.13: Filtering after the upsampling by a factor of 2

4 Block Parameters: Digital Filter Design

File Edit Analysis

Targets View Window Help

DS e« d0 DR Rk &I Bkl

4\ Block Parameters: Digital Filter Design1

File

DeREl|a<w i DA M40 Bh 7

Edit Analysis Targets View Window Help

r Current Filter Informatio — r Current Fitter Informatio —
| o L ~
h Y . n v
Structure: Direct-For B o0 Structure: Direct-For .20 N
Order 30 bl Order: 43 i} 4
Stable: Yes 5 407 \". Stable: Yes £ 40 \
Source: Designed £ gql \ Source: Designed £ \
7 ‘| peor |
80T TATAYATATAYAYAT4 = TOAYaTaYavaTaY: YaTatavavatara
rl‘.'\ VA YA -80 LYV 1IlI I [i 11
Store Fitter ... 0 05 1 15 2 Store Filter ... 1] 5 10 15 20
Fitter Manager ... Erarianca flidzl Fiter Manager ... Cw e b=
GHeREY | s Lm: i L P
rResp Fitter Frequency Magnitude —R Filter Freguency Magnitude
@[\ ownass v || O Specif... [10 Unit [z «| || unit [¢p - ®)| gwpass ~| | O Specif... 10 unit |[Hz | || unit |aB
Hiohpass - i Fg 4800 Highoass ™ Fs |4B000
(O Bandpass Q- Apass 1 () Bandpass ® iinim... s Apass 1
! 1000 y Bandst — O pti 1000 .
ﬁ’E 8Bandstup Optio — Fpass Astop/80 ﬁ; (O Bandstop me. = Fpﬂss Astop/E0
E Differentiator | || Density Fstop: 1400 P Differentiator ~ | || Density Fstop:|2800
@ - Design @ — Design
E Or Butterw... O Butterw... ~
o o
ﬂ ®F Equiripple ~ % ®F Equiripple
Wi Input Columns as channels {frame based) Design Fi... ﬂﬁ Input Columns as channels (frame based) v Design F
Ready Ready

(a) Filtro Fir con Fs=4800Hz (b) Filtro Fir con Fs=48000Hz

Figure 10.14: Filters’settings

e Upsample (Section 10.3.10)

e Digital Filter Design (Section 10.3.11)
eSine Wave/Cosine Wave (Section 10.3.12)
e Product (Section 7.2.3)

e Add (Section 9.3.9)

eMaz - Divide - Gain (Section 6.3.5)
eData Type Conversion (Section 4.3.2)

e Matriz Concatenatel (Section 4.3.3)

e ALSA Audio Playback (Section 4.3.4)

e Bernoulli Binary Generator (Section 10.3.1)
e M-PAM Modulator Baseband (Section 6.3.2)
eComplex to Real-Imag (Section 6.3.3)

o Multiport Selector (Section 10.3.4)

ePad (Section 10.3.5)

eConstant (Section 10.3.6)

eMatriz Concatenate (Section 4.3.3)

o/FF'T (Section 10.3.8)

oo Frame (Section 10.3.9)

10.3.1 Bernoully Binary Generator

The Bernoully Binary Generator block, with the specific configuration for the OFDM trans-
mitter, is described in Section 10.2.1. It represents the binary information source. Its task is to
produce a random sequence of independent bits with Bernoulli statistics.

G. Pasolini, A. Bazzi, M. Mirabella 124 Stmulink Defined Radio

Raspberry Pi2 - TLC

"4 Source Block Parameters: Cosine Wave X "4 Source Block Parameters: Sine Wave e
Sine Wave (mask) (link) Sine Wave (mask) (link)

Output samples of a sinusoid. To generate more than one sinusoid Output samples of a sinusoid. To generate more than one sinusoid
simultaneously, enter a vector of values for the Amplitude, Frequency, and simultaneously, enter a vector of values for the Amplitude, Frequency, and
Phase offset parameters. Phase offset parameters.

Main Data Types Main Data Types
Amplitude: Amplitude:
[2715-1] | [2715-1] |
Frequency (Hz): Frequency (Hz):

[15000 | [15000 |
Phase offset (rad): Phase offset (rad):

[pir2 | [pi |
Sample mode: | Discrete - Sample mode: |Discrete -
Output complexity: |Real - Output complexity: |Real -
Computation method: | Trigonometric fcn - Computation method: | Trigonometric fcn -
Sample time: Sample time:

[1/48000 | [1/48000 |
Samples per frame: Samples per frame:

[1280 | [1280 |
Resetting states when re-enabled: |Restart at time zero - Resetting states when re-enabled: |Restart at time zero -
9 Cancel Help Apply Q Cancel Help Apply

(a) Settings for the cos(27 ft) generation (b) Settings for the —sin(27 ft) generation

Figure 10.15: Configuration windows for the Cosine Wave block and the Sine Wawve block

10.3.2 M-PAM Modulator Baseband

The M-PAM Modulator Baseband block is described in Section 6.3.2. It converts the input
bits € {0, 1} into 2-PAM symbols € {-1, 1}.

For the current project this block adopts the same configuration shown in Fig.6.5.

As recalled in Section 6.3.2, despite the fact that 2-PAM symbols are purely real quantities,
the M-PAM Modulator Baseband block generates each of them in the complex format,
associating to each symbol an imaginary component with null value (es. [...,1 410, —1410,...]).
A Complex to Real-Imag block is thus needed in order to remove the imaginary components.

10.3.3 Complex to Real-Imag

The Complex to Real-Imag block is described in Section 6.3.3. Its task is to remove the
symbols’ imaginary component. This block adopts the same configuration shown in Fig.6.7.

10.3.4 Multiport Selector

The Multiport Selector block divides the content of the single frame a its input into two differ-
ent output frame. Its functioning is described in Section 10.2.2. The corresponding configuration
window is shown in Fig.10.8.

G. Pasolini, A. Bazzi, M. Mirabella 125 Stmulink Defined Radio

Raspberry Pi2 - TLC

10.3.5 Pad

The Pad block is described in Section 10.2.2: it postpones a sequence of 15 zeroes, corresponding
to the 15 virtual carriers, to the symbols in its input frame. The number of added zeroes is the
result of the difference between the output frame length (39) and the input frame length (24).
The corresponding configuration window is shown in Fig.10.9.

10.3.6 Constant

The Constant block generates the output value 0, corresponding to the amplitude of DC carrier.
The corresponding configuration window is shown in Fig.10.16.

"4 Source Block Parameters: Constantl

Constant

Output the constant specified by the 'Constant value' parameter. If
'Constant value' is a vector and 'Interpret vector parameters as 1-D' is
on, treat the constant value as a 1-D array. Otherwise, output a matrix
with the same dimensions as the constant value.

Main | Signal Attributes

Constant value:
0
Y| Interpret vector parameters as 1-D

Sample time:
inf

9 oK H Cancel H Help Apply

Figure 10.16: Configuration window of the Constant block

10.3.7 DMatrix Concatenate

The Matriz Concatenate block is discussed in Section 10.2.2. It is used to concatenate in
a single output frame the three inputs in which the symbols associated to the subcarriers are
divided. The corresponding configuration window is shown in Fig.10.10.

10.3.8 IFFT

The IFFT block, described in Section 10.2.2, performs the inverse discrete Fourier transform of
its input signal. This block adopts the configuration shown in Fig.10.11.

10.3.9 Frame Conversion

The Frame conversionl block sets the sampling mode of the output signal. In this case the
frame based mode is chosen. The corresponding configuration window is shown in Fig.10.12.

G. Pasolini, A. Bazzi, M. Mirabella 126 Stmulink Defined Radio

Raspberry Pi2 - TLC

10.3.10 Upsample

For a given upsampling factor L, the Upsample block adds L-1 zeroes after each input value. In
this way, the sampling frequency of the output signal increases by a factor of L, without causing
any distortion of the spectrum. The configuration windows of the Upsample2 and Upsample3
blocks are shown in Fig.10.17.

"% Function Block Parameters: Upsample2 [S \"& Function Block Parameters: Upsample3 S|
Upsample (mask) (link) Upsample (mask) (link)
Upsample by inserting L-1 zeros between input samples. Upsample by inserting L-1 zeros between input samples.
Parameters Parameters
Upsample factor, L: Upsample factor, L:
] 1q
Sample offset (0 to L-1): Sample offset (0 to L-1):
0 0
Input processing: ‘Golumns as channels (frame based) " Input processing: ‘Oolumns as channels (frame based) "
Rate options: |Enforce single-rate processing " Rate options: ‘EﬂfOfCE single-rate processing "
9 [OK l | Cancel ‘ ‘ Help Apply 2 l OK] ‘ Cancel ‘ ‘ Help Apply
(a) Upsample?2. (b) Upsample3.

Figure 10.17: Configuration windows

10.3.11 Digital Filter Design

The Dzgital Filter Design block, whose functioning is described in Section 10.2.3, represents a
filtering stage. Its aim is to remove the undesired spectral components following the Upsample
block. The configuration windows of the Digital Filter Destign and Digital Filter Designl
blocks are shown in Fig.10.14.

10.3.12 Sine Wave/Cosine Wave

The Sine Wave and Cosine Wave blocks generate the quadrature carriers for the upconversion
of the signal at intermediate frequency. The corresponding configuration windows, similar to
those discussed in Section 4.3.1, are shown in Fig.10.15.

10.3.13 Product

The Product block performs the product of its inputs, whose number is defined by the Number
of inputs parameter of its configuration window. In this project this parameter is set at 2, as
shown in Fig.7.5. The two Productl and Product2 blocks act as mizers, performing product
modulations.

10.3.14 Add

The Add block performs the sum or the difference of its inputs. In this project the block must
sum up two inputs, that’s why the List of signs field of its configuration window is set as “++7,
as shown in Fig.9.8. The block performs, therefore, the sum of the two signals.

G. Pasolini, A. Bazzi, M. Mirabella 127 Stmulink Defined Radio

Raspberry Pi2 - TLC

10.3.15 Max-Divide-Gain (Automatic Gain Control)

The Max-Divide- Gain block, composing the automatic-gain-control macroblock, are described
in Section 6.3.5. These blocks adopt the same configurations shown in Fig.6.10 and in Fig.6.11.

10.3.16 Data Type Conversion

The Data Type Conversion block is described in Section 4.3.2. It converts an input signal of
any Simulink data type to the data type specified in its configuration window. This block adopts
the same configurations shown in Fig.4.8.

10.3.17 Matrix Concatenate

The Matriz Concatenate block is described in Section 4.3.3. It is used to produce a two-
channel output signal (that is, a stereo signal), starting from the two mono signals at its input.
This operation is needed as the ALSA Audio Playback block, that follows the Matriz Con-
catenate block, requires a stereo input signal.

This block adopts the same configuration shown in Fig.4.9.

10.3.18 ALSA Audio Playback

The ALSA Audio Playback block is described in Section 4.3.4. It represents the Raspberry
Pi2’s analog output. Its task is to perform the digital-to-analog conversion of the signal and send
it to the sound card for playback.

This block adopts the same configuration shown in Fig.4.10.

10.3.19 Implementation and test of the OFDM transmitter

Once the Simulink model is realized and checked through Simulink simulations, it is possible to
carry out the Deploy to Hardware, as described in Section 4.4. The implemented system starts
as soon as the download of the corresponding files on the device is completed.

Connecting the Raspberry Pi2 to the spectrum analyser, according to the scheme in Fig.10.2,
the signal spectrum should appear as shown in Fig.10.18.

G. Pasolini, A. Bazzi, M. Mirabella 128 Stmulink Defined Radio

-20dBV

-25dBV

-30dBV

-35dBV

-40dBV

-45dBV

-50dBV

-5 dBV

-60dBV

-65dBV

-70dBV

Done | 11/ T2| Maximum: 10.00 kHz RBW: 244 Hz R
1 T T T T T T T T T
‘ I U LR |||
|
N ‘ | lH
|
Lol | I
T L it
Il 1 1 1 1 1 1 1
Center: 5kHz 500,00 Hz / div Span:5kHz

Figure 10.18: OFDM signal spectrum

	Raspberry Pi2 and Simulink configuration
	Hardware Support Packages
	Equipment
	Hardware Support Package Installation
	Installation of the Raspberry Pi™OS and network configuration
	Installation and configuration of the USB to LAN converter
	Raspberry Pi2 Power On
	Controlling the Raspberry Pi2 through MATLAB

	Sound card configuration
	External sound card configuration

	The workstation
	 Personal Computer
	The equipment
	The workstation

	Raspberry Pi2 as a signal generator
	Equipment required for this experience
	Raspberry Pi2 as a sine wave signal generator
	Sine Wave macroblock
	Raspberry Pi output macroblock
	Control LED macroblock

	Elementary blocks used
	Sine Wave
	Data Type Conversion
	Matrix Cancatenate
	ALSA Audio Playback
	Pulse Generator
	LED

	Settings for the hardware execution of the project
	Hardware execution of the project
	Launching the execution within Simulink
	Launching the execution with Matlab commands
	Launching the execution with Linux commands

	Raspberry Pi2 as a digital filter
	Equipment required for this experience
	Raspberry Pi2 as digital filter
	Elementary blocks used
	ALSA Audio Capture
	Digital Filter Design
	Data Type Conversion
	ALSA Audio Playback
	Implementation and test of the digital filter

	Baseband modulations with Raspberry Pi2
	Equipment required for this experience
	Raspberry Pi2 as 2-PAM transmitter
	Elementary blocks used
	Bernoulli Binary Generator
	M-PAM Modulator Baseband
	Complex to Real-Imag
	Raised Cosine Transmit Filter
	Max-Divide-Gain (Automatic Gain Control)
	Implementation and test of the 2-PAM transmitter

	Raspberry Pi2 as a 4-PAM transmitter
	Elementary blocks used
	Bernoulli Binary Generator
	M-PAM Modulator Baseband
	Complex to Real-Imag
	Raised Cosine Transmit Filter
	Max-Divide-Gain (Automatic Gain Control)
	Data Type Conversion
	Matrix Concatenate
	ALSA Audio Playback
	Implementation and test of the 4-PAM transmitter

	PAM modulations with square pulses
	BaseBand Modulation
	2-PAM and 4-PAM transmitters with square pulses implementation and check

	2-ASK and 4-ASK modulations with Raspberry Pi2
	Equipment required for this experience
	2-ASK transmitter
	Baseband Modulation
	Raspberry Pi system input
	Product
	Max-Divide-Gain (Automatic Gain Control)
	Raspberry Pi output
	Control LED

	Elementary blocks used
	Bernoully Binary Generator
	M-PAM Modulator Baseband
	Complex to Real-Imag
	Raised Cosine Transmit Filter
	ALSA Audio Capture
	Multiport selector
	Data Type Conversion
	Product
	Max-Divide-Gain (Automatic Gain Control)
	Matrix Concatenate
	ALSA Audio Playback
	Implementation and test of the 2-ASK transmitter

	4-ASK transmitter
	Elementary blocks used
	Implementation and test of the 4-ASK transmitter

	QPSK modulation with Raspberry Pi2
	Equipment required for this experience
	QPSK transmitter
	BaseBand Modulation - Quadrature Phase Shift Keying
	BB to IF
	Max-Divide-Gain (Automatic Gain Control)
	Raspberry Pi output
	Control LED

	List of the adopted Simulink blocks
	Bernoully Binary Generator
	QPSK Modulator Baseband
	Complex to Real-Imag
	Raised Cosine Transmit Filter
	Sine Wave/Cosine Wave
	Data Type Conversion
	Max-Divide-Gain (Automatic Gain Control)
	Matrix Concatenate
	ALSA Audio Playback
	Implementation and test of the QPSK transmitter

	2-FSK modulation with Raspberry Pi2
	Equipment required for this experience
	2-FSK transmitter
	Baseband Modulation
	Frequency Modulation
	Raspberry Pi output
	Control LED

	Elementary blocks used
	Bernoully Binary Generator
	M-PAM Modulator Baseband
	Complex to Real-Imag
	FIR Interpolation
	Sine Wave
	Saturation
	Gain
	Product
	Add
	Data Type Conversion
	Matrix Concatenate
	ALSA Audio Playback
	Implementation and test of the 2-FSK transmitter

	Raspberry Pi2 as an OFDM transmitter
	Equipment required for the realization of this experience
	Raspberry Pi2 as OFDM transmitter
	Baseband Modulation
	OFDM
	Upsampling
	BBtoIF
	Max-Divide-Gain (Automatic Gain Control)
	Raspberry Pi output
	Control LED

	Elementary blocks used
	Bernoully Binary Generator
	M-PAM Modulator Baseband
	Complex to Real-Imag
	Multiport Selector
	Pad
	Constant
	Matrix Concatenate
	IFFT
	Frame Conversion
	Upsample
	Digital Filter Design
	Sine Wave/Cosine Wave
	Product
	Add
	Max-Divide-Gain (Automatic Gain Control)
	Data Type Conversion
	Matrix Concatenate
	ALSA Audio Playback
	Implementation and test of the OFDM transmitter

