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Chapter 1

Raspberry Pi2 and Simulink

con�guration

Figure 1.1: Raspberry Pi2 model B

In order to connect the small and cheap Raspberry Pi2 single-board computer (Fig:1.1) with
MATLAB and Simulink, some preliminary operations must be performed. The con�guration
procedure described in this chapter allows the communication between the PC hosting MAT-
LAB/Simulink and the Raspberry Pi2 board, without the need to add a keyboard, a monitor,
and a mouse to the Raspberry Pi2, with evident bene�ts in terms of system setup.

Please note that, although the concepts described in this document are of general validity,
small changes in the graphical representation or available options may be observed for versions
of MATLAB that are di�erent from the R2015a used in this document.

1.1 Hardware Support Packages

The growing availability of low cost prototyping boards, microcontrollers and single-board com-
puters, suggested Mathworks to develop speci�c Hardware Support Packages that expand the
functionalities of MATLAB and Simulink, allowing them to interface with a variety of devices
developed by third-party vendors.

7



Raspberry Pi2 - TLC

(a) Raspberry Pi2 model B (b) USB-micro USB cable (c) Micro SD memory
card with adapter

(d) USB to LAN converter (e) Ethernet cable (f) USB Hub

Figure 1.2: Basic equipment

In this chapter we describe, in particular, the procedure to install the Raspberry Pi Sup-
port Package, that extends both MATLAB and Simulink libraries and updates the Raspberry
Pi�operating system (OS).

The prerequisites and the equipment required to successfully complete the operation are
detailed in the following section.

1.2 Equipment

The installation of the Raspberry Pi Support Package requires a PC equipped with MAT-
LAB/Simulink as well as an SD memory-card slot. The following items are also necessary:

� Nr.1 Raspberry Pi2 model B (Fig.1.2(a));

� Nr.1 USB-micro USB cable for the power supply (Fig.1.2(b));

� Nr.1 micro SD memory-card, with an SD adapter if needed by the PC (Fig.1.2(c));

� Nr.1 USB to LAN converter, needed in some cases, as detailed in Section 1.5 (Fig.1.2(d));

� Nr.1 Ethernet cable (Fig.1.2(e));

� Nr.1 USB hub, needed in case the PC has only two USB ports (Fig.1.2(f)).

Moreover, a Mathworks account is needed (free registration at www.mathworks.com).

G. Pasolini, A. Bazzi, M. Mirabella 8 Simulink De�ned Radio
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Figure 1.3: Get the Hardware Support Packages

Figure 1.4: Select an action Figure 1.5: Select support package to install

1.3 Hardware Support Package Installation

The Raspberry Pi Support Package can be downloaded and installed directly in the MATLAB
environment through Add-Ons→Get Hardware Support Packages, as shown in Fig. 1.3.

When requested (see Fig.1.4, select the option Install from Internet and continue, clicking
Next.

Once you have selected the support package for Raspberry Pi�, as shown in Fig.1.5, click
Next. Click then OK when the window shown in Fig.1.6 is displayed.

The installation procedure continues with the request to log-in with a registered Mathworks
account, as shown in Fig.1.7. Click Log In and enter your log-in information in the window
shown in Fig.1.8.

Accept the licence conditions shown in Fig.1.9 and click Next. Click Next once more when
the window shown in Fig.1.10 is displayed.

Finally, click Install when the con�rmation request shown in Fig.1.11 appears.

The procedure continues with the installation of the MATLAB Support Package for

G. Pasolini, A. Bazzi, M. Mirabella 9 Simulink De�ned Radio
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Figure 1.6: Required support package Figure 1.7: Log in to Mathworks Account

Raspberry Pi Hardware and the Simulink Support Package for Raspberry Pi Hard-
ware.

At the end of the installation, the window shown in Fig.1.12 is displayed. MATLAB and
Simulink are now ready to interact with Raspberry Pi�devices.

The next step is the installation of the Raspberry Pi�OS on a micro SD card and the
con�guration of the connection between the PC and the Raspberry Pi�.

Before clicking Continue in the window shown in Fig.1.12, thus starting the OS installation, it
is necessary to establish how to con�gure the network connection between the Raspberry Pi�and
the PC. This aspect will be discussed in the following section.

1.4 Installation of the Raspberry Pi�OS and network con�gura-

tion

Communications between MATLAB/Simulink and the Raspberry Pi2 board occur through a
network connection, that must be properly set up.

The con�guration procedure can be performed during the installation of the Raspberry Pi2
OS, that takes place after the above described Hardware Support Package installation, or later,
by accessing directly to the network con�guration �les of the Raspberry Pi2.

The �rst option, described below, is the fastest one. It allows, in fact, to immediately control
the Raspberry Pi2 board through the PC hosting MATLAB/Simulink once the OS is installed,
with no need to access the Raspberry Pi2 con�gurations with additional peripherals, such as
monitor, keyboard and mouse.

Coming back to the installation procedure, click Continue in the window shown in Fig.1.12
to start the OS installation.

When the window shown in Fig.1.13 appears, select Raspberry Pi (Simulink) and click Next.

The �rst thing to do is to choose the Raspberry Pi�model. The procedure explained hereafter
is valid for all the Raspberry Pi� models that can be selected, although in this document we will
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Figure 1.8: Mathworks Account Log In

proceed with the installation of the Raspberry Pi2 OS, as shown in Fig.1.14.
Clicking Next you will get to the window shown in Fig.1.15, regarding the con�guration of

the network connection between the PC and the Raspberry Pi�. According to what has been
previously said, the choice will be Manually enter network settings, as shown in Fig.1.15. The
procedure detailed in the following will directly modify the Raspberry Pi2 system �les containing
the network parameters. This ensures the immediate use of the hardware once the installation
is concluded, without further con�gurations.

The window shown in Fig.1.15 also requires to enter the Host name that identi�es the device
being installed. As an example, we chose the Host name Raspberrypi-TLC1, but the choice
is absolutely arbitrary1.

In addition, an IP address must be manually selected. The choice of the IP address to be
assigned to the Raspberry Pi2 depends on the availability of free addresses within the local-area-
network (LAN): with the command PING #IPaddress, executed in the Windows command
interpreter CMD, it is possible to check the actual availability of an IP address. The procedure
here described adopts the con�guration shown in Table 1.1.

IP ADDRESS 169.254.0.3

NETWORK MASK 255.255.0.0

DEFAULT GATEWAY 169.254.0.1

Table 1.1: Choice of Raspberry Pi2's network parameters

The �nal objective is to create a local network between the PC and the Raspberry Pi2. If a
network switch is available, more than one Raspberry Pi2 can be simultaneously controlled once
each device has been properly set up in terms of IP address. In the example given in the table

1The Host name assigned in this phase will be displayed in the prompt of the Raspberry Pi2 Linux Shell,
that will be described later. By default, MATLAB and Simulink will assign the device a prede�ned Host name,
corresponding to its IP address.
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Figure 1.9: License agreement Figure 1.10: Third-party software licenses

Figure 1.11: Con�rm installation Figure 1.12: Install/update complete
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Figure 1.13: Set up support package

Figure 1.14: Choice of the Raspberry Pi2 model

1.2, the addresses assigned to three Raspberry Pi2 have been reported. As can be noticed, the
network mask and the default gateway are the same.

Clicking Next in the window shown in Fig.1.15, the window depicted in Fig.1.16 appears,
which requires to insert the micro SD card (with the SD adapter, if necessary) in the appropriate
slot of the PC. Clicking Next, the window shown in Fig.1.17 is displayed, requesting a con�r-
mation to write in the memory card. Clicking write the Raspberry Pi2's OS installation �nally
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Figure 1.15: Network Con�guration

Device IP ADDRESS NETWORK MASK DEFAULT GATEWAY

Raspberry - TLC2 169.254.0.4 255.255.0.0 169.254.0.1

Raspberry - TLC3 169.254.0.5 255.255.0.0 169.254.0.1

Raspberry - TLC4 169.254.0.6 255.255.0.0 169.254.0.1

Table 1.2: Choice of network parameters for several Raspberry Pi2

starts, with the adopted network settings, on the micro SD card (Fig.1.18). This step might
require some tens of minutes.

Once the operation is completed, the wizard suggests the steps to follow in order to connect
the Raspberry Pi2 to the PC (Fig.1.19). Before clicking Next, and proceeding with the next
step of the wizard, it is necessary can be necessary to install and set up an USB to Ethernet
converter, as explained in Section 1.5. The use of an USB to Ethernet converter is required any
time a Ethernet port is not available on the PC.

1.5 Installation and con�guration of the USB to LAN converter

Communications between the PC and the Raspberry Pi2 take place through a network (Ethernet)
connection. This entails that a direct connection between them occupies the Ethernet port of the
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Figure 1.16: OS Installation

Figure 1.17: Write �rmware Figure 1.18: Write �rmware

PC, which could be prevented from connecting to the local network as well as to the Internet.
In order to connect the Raspberry Pi2 directly to the PC avoiding this problem, an USB 2.0 to
LAN converter can be used, like the one shown in Fig.1.20.

By using the converter, it is possible to create a local area network between the Raspberry
Pi2 and the PC, with no need to occupy its Ethernet port.

Once the driver of the device has been installed (a step that is not always needed and depends
from the speci�c device and PC OS), it is necessary to manually enter the IP address assigned to
the converter. The choice of the address must be consistent with the subnet mask and gateway
previously assigned to the Raspberry Pi2. To set the IP address, it is necessary to

� Connect the converter to an USB port of the PC;
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Figure 1.19: Connect the Raspberry Pi�hardware

Figure 1.20: USB to LAN converter

� Access the network con�guration window through Control Panel> Network and In-
ternet>Network Connections;

� Identify the network card to be con�gured (corresponding to the USB to LAN converter);

� Modify the TCP/IPv4 properties, as shown in Fig.1.21.

Fig.1.21 also shows example addresses for the con�guration of the device.

1.6 Raspberry Pi2 Power On

Once the USB 2.0 to LAN converter has been con�gured, it is possible to test the proper func-
tioning of the system. After inserting the micro SD card with the OS in the Raspberry Pi2 slot
and after connecting the PC according to the scheme shown in Fig.1.22, the Raspberry Pi2 can
be powered on.
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Figure 1.21: Con�guration of the USB2.0 to LAN converter

Figure 1.22: Connection scheme
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Figure 1.23: Network parameters test

The power supply can be done either using an AC/DC converter with micro USB connector,
like those used for cell phones, or through a cable with USB-microUSB connectors, thus taking
the power directly from one of the USB ports of the PC.

Please be aware, however, that the �rst option can cause some problems due to the dis-
turbances generated by the AC/DC converter. The occurrence and entity of this phenomenon
depends on the quality of the AC/DC converter. In any case, for this reason the second option
might be preferred.

Once the Raspberry Pi2 is initialised, it is possible to test the connection between the device
and the PC. For this purpose it is necessary to continue the installation procedure previously
interrupted, by clicking Next in the window shown in Fig.1.19. The installation will continue with
the hardware research phase (Fig.1.23), leading to the window shown in Fig.1.24. By starting
the connection test (click Test connection) it is possible to have a con�rmation of the successful
connection (Fig.1.25).

Clicking Next, the installation procedure is completed (Fig.1.26). From now on, it is possible
to interact with the Raspberry Pi2 directly within MATLAB, as explained below.

1.7 Controlling the Raspberry Pi2 through MATLAB

In order to test within MATLAB the connection between the PC and the Raspberry Pi2 and to
get information about host name, user name, password and active build directory 2, the command
below can be executed in the MATLAB command window:

2The build directory is the Raspberry Pi2 folder where all the �les generated by MATLAB/Simulink are stored.
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Figure 1.24: Con�rm board con�gurations

Figure 1.25: Connection successful Figure 1.26: Support package setup complete

1 raspberrypi

Listing 1.1: Get info from the Raspberry Pi�board

The result is shown in Fig.1.27. The default settings are:

� HostName: Raspberry Pi2's IP address;
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Figure 1.27: Information about connected device

� UserName: pi ;

� Password: raspberry ;

� Build directory: /home/pi/ .

Remaining in the MATLAB command window, it is possible to access the Raspberry Pi2
settings, directories, and �les, by means of a Linux Shell. This is done through the following
commands:

h=raspberrypi('169.254.0.3 ');

h.openShell('ssh')

Listing 1.2: MATLAB commands to open a Linux Shell

The function raspberrypi, invoked with the HostName (corresponding to the IP address) as
the only parameter, provides a handle �h� associated to the addressed device, that is used to
open the corresponding Shell with the command h.openShell.

As a result of the operation, the Shell opens requesting the UserName and the Password, as
shown in Fig.1.28. Entering UserName pi and Password raspberry you access the Raspberry
Pi2 Linux environment in the Build Directory /home/pi, as shown3 in Fig.1.29. To exit the
Linux Shell enter the command exit.

If you want to access more than one Raspberry Pi2 connected to MATLAB, it is necessary
to create di�erent handles, as shown in Listing:1.3. The Linux Shell can be invoked using the
corresponding handle.

h1=raspberrypi('169.254.0.4 ');

h2=raspberrypi('169.254.0.5 ');

Listing 1.3: MATLAB commands to open more than one Linux Shell

3Note that the Linux prompt displays the Host name assigned to the device during the OS installation (Section
1.4). As previously said, this Host name is di�erent from the one used by default by MATLAB, that corresponds
to the IP address assigned to the device.
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Figure 1.28: Linux Shell

Figure 1.29: Linux environment

The whole installation procedure of a new Raspberry Pi2 can be performed within the MAT-
LAB command window by simply launching the command targetupdater :

targetupdater

Listing 1.4: MATLAB command for new con�guration

The Raspberry Pi2's network settings can be checked or modi�ed using, within the Linux
Shell, the command:

0 sudo nano /etc/network/interfaces

Listing 1.5: Linux code to access the network settings

as shown in Fig.1.30, where sudo is the Linux command to obtain the rights of the superuser, and
nano is a text editor (obviously, any other text editor could be used as well). The Raspberry Pi2
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Figure 1.30: Linux Shell. Network con�guration

answers opening, in the text editor nano, the �le containing the network con�gurations (Listing
1.6).

0 auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static

5 address 169.254.0.3

netmask 255.255.0.0

gateway 169.254.0.1

allow -hotplug wlan0

10 iface wlan0 inet manual

wpa -roam /etc/wpa_supplicant/wpa_supplicant.conf

iface default inet dhcp

Listing 1.6: Network con�guration �le

Through the editor it is always possible to modify the Raspberry Pi2's network parameters.
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Chapter 2

Sound card con�guration

Figure 2.1: 33051D USB sound card

In order to use the Raspberry Pi2 board as a digital signal processing device, an analog
input and an analog output are required. The Raspberry Pi2 is equipped with an analog output
(headphone output) but not with an analog input. To �ll this gap, it is possible to use an
external USB sound card similar to the one shown in Fig.2.1, that supplies a microphone input
and one more headphones output. In particular, the sound card that we used is equipped with
the 33051D chipset.

This cheap device, connected to the Raspberry Pi2's USB port, will thus play a double role:
analog-to-digital converter (ADC) for input signals and digital-to-analog converter (DAC) for
output signals.

Being the device conceived for audio signals, its sampling frequency is limited to 48000
samples per second, with a resolution of 16 bits per sample. It follows that, in principle, the
band of generated and received signals must be within the interval [0, 24 kHz]. In practice,
however, the highest frequency that can be reached is in the order of 20 kHz; when this threshold
is exceeded, in fact, a signi�cant attenuation, that increases with the frequency, is introduced on
the signal.

Please observe that, although the Raspberry Pi2 is equipped with an integrated audio output
(headphones output), it is surely preferable to use the analog output provided by the external
sound card. The integrated DAC is, in fact, of poor quality, as can be easily understood observing
Fig.2.2: The yellow curve represents a 10 kHz sine generated by a Raspberry Pi2 and measured
at the integrated output, whereas the red curve represents the same signal measured at the sound
card output. The di�erence is evident, especially when the frequency increases (Fig.2.3).
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Figure 2.2: Comparison between the external DAC output and the Raspberry Pi2 headphones
output. 10 kHz sine wave

Figure 2.3: Comparison between the external DAC output and the Raspberry Pi2 headphones
output. 20 kHz sine wave

G. Pasolini, A. Bazzi, M. Mirabella 24 Simulink De�ned Radio



Raspberry Pi2 - TLC

2.1 External sound card con�guration

The external sound card con�guration requires to modify some parameters of the Raspberry
Pi2's sound drivers.

The �rst step is to set this card as the primary audio device. After connecting the sound
card to the Raspberry Pi2's USB port, it is possible to check its presence as output device by
opening the Linux Shell (Section 1.7) and launching the command:

0 aplay -l

Listing 2.1: Linux command: aplay -l

Figure 2.4: Linux aplay -l command

As can be seen in Fig.2.4, showing the result of this operation, the primary audio device is
the bcm2835 ALSA, that is, the internal DAC. This can be easily deduced by its Card parameter,
which is equal to 0.

The external DAC, labelled as USB Audio Device, has instead the Card parameter set at 1.

In order to reverse the priority of the two audio devices, it is necessary to modify the alsa-
base.conf �le. For this purpose, open the �le alsa-base.conf in the text editor nano of the Linux
Shell through the command

0 sudo nano /etc/modprobe.d/alsa -base.conf

Listing 2.2: Audio driver con�guration

and add the new line (Listing:2.3),
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0 #Set to 0 to obtain the loading of the USB Sound Card as first

options snd -usb -audio index =0

Listing 2.3: Audio driver modi�cation

as shown in Fig.2.5. Find, then, the line reported in Listing:2.4, that must be commented adding
the character �#� (Fig.2.5).

0 # Keep snd -usb -audio from beeing loaded as first soundcard

options snd -usb -audio index=-2

Listing 2.4: Audio driver modi�cation

Figure 2.5: File Alsa-Base.conf

For the change to be e�ective, it is necessary to restart the system through the reboot
command (Listing:2.5).

0 sudo reboot

Listing 2.5: Linux command: reboot

Once the system is restarted, you can verify that the external sound card is now the primary
audio player (Fig.2.6) by checking it through the command in Listing:2.1. Moreover, executing
the command in Listing:2.6 you will see that an audio acquisition (CAPTURE) device is also
present (Fig.2.6): It is the microphone input, made available by the USB sound card.

G. Pasolini, A. Bazzi, M. Mirabella 26 Simulink De�ned Radio



Raspberry Pi2 - TLC

Figure 2.6: aplay and arecord outputs

0 arecord -l

Listing 2.6: Linux command: arecord -l

In order to simultaneously use both the input and the output, it is necessary to check the
corresponding sound levels (volumes) through the command in Listing:2.7.

0 alsamixer

Listing 2.7: Linux command: alsamixer

The alsamixer command opens the sound level con�guration window (Fig.2.7): It is important
to notice that the microphone audio level is set at 0 by default. This means that no signal
acquisition can be carried out with the default setting. Of course it is possible to select the entry
to be modi�ed by using the arrows in the keyboard and to raise or lower the level for the selected
audio device, for both input and output. With the function key F6 it is also possible to access
the settings of other sound cards possibly present.
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Chapter 3

The workstation

In the following chapters we will describe some didactic experiences concerning the Simulink
modelling and the subsequent hardware implementation of telecommunication systems and dig-
ital signal processing algorithms.

Apart from the Raspberry Pi2 board, such activities require a PC hosting MATLAB and
Simulink, as well as instruments for the generation and analysis of signals in the frequency and
time domains. The equipment includes also cables and adapters suitable for interconnecting the
Raspberry Pi2 to both the PC and the instruments.

The workstation setup and the equipment required will be discussed in the following sections.

3.1 Personal Computer

The experimental activities that will be presented in the following chapters require, �rst of all, a
PC equipped with MATLAB and Simulink. In particular, the experiences described below have
been realized with MATLAB R2015a equipped with the following libraries:

� Communications System Toolbox;

� DSP System Toolbox;

� Data Acquisition Toolbox;
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� Fixed-Point Designer;

� Instrument Control Toolbox;

� Signal Processing Toolbox.

3.2 The equipment

The experimental activities described in the following will result in the realization of systems
able, in general, to generate and process signals.

The system modelling stage, carried out using Simulink, and the Raspberry Pi2 implemen-
tation, will be thus followed by a signal measurement phase, aimed at verifying the correct
functioning of the system designed and to con�rm, through experimental observations, the the-
oretical concepts concerning the implemented system.

The equipments required for the measurement campaign are typically available in every
didactic lab for electronics and telecommunications, with particular reference to:

� Signal generator. It is the classic device used to generate signals with user-de�ned
characteristics. In its simplest versions it can generate periodic signals (sine waves, square
pulse trains, ...) and particular aperiodic signals (Gaussian noise, single square pulse, ...).
It will be mostly used as a sine wave generator, in order to provide the carrier needed
by some of the implemented transmitters, or the input signal to test the digital �ltering
systems.

Figure 3.1: Signal generator

� Oscilloscope. In the majority of cases, the observation of signals will focus on their
behaviour in the time domain. This task is performed through an oscilloscope, that will
be employed in most of the experimental activities described below.

� Spectrum analyser. To investigate the spectrum of a signal it is necessary to perform a
frequency domain analysis. The tool required for this kind of investigation is the spectrum
analyzer, which is able to display the power distribution of a signal along the frequency
axis.

It is worth noting that the signals that will be generated/processed by our systems are within
the [0 24 kHz] band, owing to the characteristics of the ADC/DAC described in Chapter 2. For
the generation or analysis of such signals there is no need for sophisticated instruments; thus, the
basic instruments typically available in a didactic lab are normally su�cient for the experimental
activities described below.
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Figure 3.2: Oscilloscope

Figure 3.3: Spectrum analyser

Nonetheless, even basic oscilloscopes and spectrum analysers are costly devices for students
or hobbyists. Apparently, therefore, the experiences here presented cannot be performed �at
home�, where lab instruments are usually not available.

Indeed, this is not true. Recently, low cost, multi-purpose instruments have been conceived
for low frequency applications. On this regard the Digilent Analog Discovery device, shown in
Fig.3.4 is worth special attention.

Figure 3.4: Digilent Analog Discovery

When connected to the PC through the USB port, this device is able to generate and acquire
signals. With a moderate price, in the order of 270$, this tool can operate as signal generator,
oscilloscope, spectrum analyser, network analyser, logic state analyser, digital signal generator

G. Pasolini, A. Bazzi, M. Mirabella 31 Simulink De�ned Radio



Raspberry Pi2 - TLC

and power supply. The user interface of each single instrument, displayed on the PC's monitor,
shows the same knobs, sliders and buttons of the �full hardware� instrument, allowing the user
to perform the measurement activity as he was in a lab.

Of course, the upper limit of the bandwidth that can be handled by the Digilent Analog
Discovery, in the order of some MHz, cannot be compared with that of more sophisticated and
expensive instruments, however it is more than adequate for the didactic experiences described
below. In this case, therefore, the signal generator, the oscilloscope and the spectrum analyser
can be conveniently replaced by this multifunction tool.

3.3 The workstation

The experimental activities described in the following chapters require a PC hosting MAT-
LAB/Simulink, a Raspberry Pi2 model B (Fig.3.5(a)), the instruments described in the previous
section, and the following items:

�Nr.1 USB-micro USB cable (Fig.3.5(b)) �Nr.1 External sound card (Fig.3.5(f))
�Nr.1 micro SD memory card (Fig.3.5(c)) �Nr.1 USB-LAN adapter (Fig.3.5(g))
�Nr.1 Network cable (Fig.3.5(d)) �Nr.2 BNC-RCA adapters (Fig.3.5(h))
�Nr.2 3.5mm-RCA jack cables (Fig.3.5(e))

(a) Raspberry Pi2 (b) USB-micro USB
cable

(c) Micro SD memory
card

(d) LAN cable

(e) Stereo 3.5mm-
RCA jack cable

(f) External
sound card

(g) USB to LAN
adapter

(h) RCA-BNC
adapter

Figure 3.5: Equipment

� USB-micro USB cable. It is used to connect the Raspberry Pi2 to the PC's USB port,
with the only aim to provide the power supply.

� Micro SD memory card. It contains the Raspberry Pi2 operating system, whose instal-
lation procedure is described in Chapter 1.
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� Network cable. It is used to connect the Raspberry Pi2 with the USB to LAN adapter
(Fig.3.5(g)), as described in Chapter 1.

� 3.5mm-RCA jack cables. They are used to connect the sound card, equipped with 3.5
mm female jacks (Fig.3.5(f)), to the instruments. RCA-BNC adapter (Fig.3.5(h)) are also
needed.

� External sound card. It is used to provide the Raspberry Pi2 with an analog input (mi-
crophone input), otherwise absent, and with a second analog output (headphones output).
See Chapter 2 for further details.

� USB to LAN adapter. It can be used to connect the Raspberry Pi2 with the PC,
providing an interface between the Raspberry Pi2 ethernet port and the PC's USB port.
See Chapter 1 for further details.

� RCA-BNC adapter. It is used to connect the 3.5mm-RCA jack cable to the instruments,
usually equipped with BNC connectors (Fig.3.5(e)).

Fig.3.6 shows an example of workstation setup.

Figure 3.6: Example of workstation

G. Pasolini, A. Bazzi, M. Mirabella 33 Simulink De�ned Radio





Chapter 4

Raspberry Pi2 as a signal generator

In this chapter we present the �rst example of Simulink project conceived to be implemented
on a Raspberry Pi2 board. The project, a sine wave generator, is intentionally simple, in order
to focus the attention on the steps for its compilation and hardware implementation. Indeed,
this project is basically a pretext to show how to generate the executable of a Simulink project
and launch its execution on Raspberry Pi2 boards.

Once these procedures become familiar, the complexity of the projects will gradually increase,
until getting to the implementation of the OFDM transmitter described in the last chapter.

4.1 Equipment required for this experience

The experimental activity described in this chapter requires an oscilloscope and the following
equipment:

�Nr.1 Raspberry Pi2 (Fig.4.1(a)) �Nr.1 USB-micro USB cable (Fig.4.1(b))
�Nr.1 Micro SD memory card (Fig.4.1(c)) �Nr.1 USB-LAN adapter (Fig.4.1(d))
�Nr.1 Network cable (Fig.4.1(e)) �Nr.1 External sound card (Fig.4.1(f))
�Nr.1 3.5mm-RCA jack cable (Fig.4.1(g)) �Nr.1 BNC-RCA adapter (Fig.4.1(h))
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(a) Raspberry Pi2 (b) USB-micro USB
cable

(c) Micro SD memory
card

(d) USB to LAN
adapter

(e) LAN cable (f) External
sound card

(g) 3.5mm-RCA
stereo jack cable

(h) RCA-BNC
adapter

Figure 4.1: Equipment

4.2 Raspberry Pi2 as a sine wave signal generator

Figure 4.2: Simulink project of the sine wave signal generator

The �rst experimental activity proposed is aimed at modelling and implementing on a Rasp-
berry Pi2 board a sine wave signal generator with con�gurable amplitude, frequency and phase
o�set. The corresponding Simulink model is shown in Fig.4.2, whereas Fig.4.3 shows the inter-
connection of the di�erent devices composing the workstation.

In order to be as clear as possible, the scheme in Fig.4.2 highlights three macroblocks, called
Sine Wave, Raspberry Pi output and Control LED, corresponding to three di�erent tasks,
associated to the objective of the project (Sine Wave macroblock), to the output manage-
ment (Raspberry Pi output macroblock) and to the execution monitoring (Control LED
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Figure 4.3: Connection scheme

macroblock), respectively.

The task of each macroblock is described below, whereas the detailed description of the
elementary blocks that constitute each macroblock is reported in Section 4.3.

Figure 4.4: Sine Wave macroblock

4.2.1 Sine Wave macroblock

The Sine Wave macroblock, shown in Fig.4.4 and described in detail in Section 4.3.1, is con-
stituted by a single elementary block, hence, strictly speaking, it should not be considered a
macroblock. It is, however, the project's core, because it is in charge of generating the sam-
ples of a sine wave with con�gurable amplitude, frequency and phase o�set. This block alone,
therefore, accomplishes the project's objective, thus deserving the �macroblock� title.

G. Pasolini, A. Bazzi, M. Mirabella 37 Simulink De�ned Radio



Raspberry Pi2 - TLC

Figure 4.5: Raspberry Pi2 output system

4.2.2 Raspberry Pi output macroblock

The Raspberry Pi output macroblock, shown in Fig.4.5, represents the Raspberry Pi2's analog
output. This macroblock has the function to adapt the signal at its input port to the format
required by the Raspberry Pi2's output port, represented by the ALSA Audio Playback block.
Such macroblock has, thus, a general nature and appears in all (or almost all) the projects
described below.

The functioning and the con�guration of the elementary blocks Data Type Conversion,
Matrix Concatenate and ALSA Audio Playback are detailed in Sections 4.3.2, 4.3.3, and
4.3.4.

Figure 4.6: Control LED macroblock

4.2.3 Control LED macroblock

The only aim of the Control LED macroblock, shown in Fig.4.6, is to intermittently turn on
and o� the Raspberry Pi2's led during the project execution, visually con�rming the that the
project is running.

This macroblock is not strictly part of the actual sine wave generator (Sine Wave+Raspberry
Pi output), to which, in fact, is not even connected. It is a general macroblock and will appear
in all the projects described below.

The introduction of this macroblock, operating in parallel with the previously described ones,
also shows that the Raspberry Pi2 can simultaneously accomplish di�erent tasks and handle
di�erent outputs.
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The functioning and the con�guration of the Pulse Generator, Data Type Conversion
and LED elementary blocks are described in Sections 4.3.5, 4.3.2 and 4.3.6.

4.3 Elementary blocks used

The list of the elementary blocks used for realizing the project is provided hereafter, along with
the reference to the sections in which their functioning is described.

�Sine Wave (Section 4.3.1) �ALSA Audio Playback (Section 4.3.4)
�Data Type Conversion (Section 4.3.2) �Pulse Generator (Section 4.3.5)
�Matrix Concatenate (Section 4.3.3) �LED (Section 4.3.6)

4.3.1 Sine Wave

Figure 4.7: Con�guration window of the Sine Wave block

The Sine Wave block generates at its output port a sampled sine wave, whose samples are
taken at instants spaced out according to the quantity de�ned in the Sample Time �eld (see the
block's con�guration window shown in Fig.4.7).

Since the maximum sampling frequency supported by the external sound card adopted in our
projects (see chapter 2) is 48000 samples/s, we chose Sample Time=1/48000 s. This obviously
establishes a limit to the highest frequency of the sine wave that can be generated, that must
not exceed the theoretic limit of 24 kHz nor the practical limit of 20 kHz.
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The sine wave generated by the Sine Wave block can be properly set up by choosing the
values of the corresponding parameters.

The �rst entry required by the block's con�guration window, shown in Fig.4.7, is the ampli-
tude, that must be entered in the Amplitude �eld. When choosing this value, it is necessary to
bear in mind that the signal dynamic range is limited by the 16-bit representation established
by the ALSA Audio Playback block (sect.4.3.4), that operates with data in the int16 format.
The highest value that can be assigned, then, will be equal to 215 − 1, corresponding to the
highest integer value that can be represented with 15 bits + 1 sign bit.

The second and the third �elds refer to the signal frequency, set as an example at 20000 Hz
in the Frequency �eld, and the phase o�set, set at 0 in the Phase o�set �eld.

The Sample Mode �eld keeps the default value Discrete, that determines the generation of
discrete-time samples.

The Output Complexity �eld, set at Real, produces a real output, as an alternative to a
complex exponential output.

The Computation Method �eld, determining which method must be used to generate the sine
wave, maintains the default Trigonometric fnc setting.

The Sample per frame �eld de�nes the frame length, that is the number of samples grouped
to be transmitted at each step to the following block. In order to increase the e�ciency, in fact,
the Raspberry Pi2 board (and in general all embedded systems) operates on blocks of data (the
frames) rather than on a single datum at a time. For this particular project the �eld frame is
set at 1024.

The last parameter that is possible to set is called Resetting States when re-enable. By setting
it at Restart at time zero, the block starts again with the initial settings in the event of a reset
(this choice is only signi�cant if the block is provided with an �enable� input, not present in this
project).

4.3.2 Data Type Conversion

The Data Type Conversion block converts an input signal of any Simulink data type to the
data type speci�ed in its con�guration window.

For the project here considered, in particular, the ALSA Audio Playback block speci�cally
requires input data in the int16 format (16-bit signed integer). The data type conversion from
Real data, supplied by the Sine Wave block, into int16 data is performed by the Data Type
Conversion1 block (in the Raspberry Pi output macroblock) by setting the Inherit: Inherit
via back propagation mode in the Output data type �eld, as shown in Fig.4.8. In this way the
Data Type Conversion1 block automatically adapts the output data type to the requirements
of the downstream stages.

In the same way, the Data Type Conversion2 block (in the Control LED macroblock),
set as Inherit: Inherit via back propagation, converts the signal produced by the Pulse Gener-
ator block into the boolean format required by the LED block.

4.3.3 Matrix Cancatenate

The Matrix Concatenate block concatenates multiple signals in a single output signal. The
output signal can be either a vector or a multidimensional array.

In the project here considered, this block is used in multidimensional mode, in order to
produce a two-channel output signal (that is, a stereo signal), starting from the two mono signals
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Figure 4.8: Con�guration window of the Data type Conversion block

Figure 4.9: Con�guration window of the Matrix Concatenate block

at its input. This operation is needed as the ALSA Audio Playback block, that follows the
Matrix Concatenate block, requires a stereo input signal. For this reason, the Number of
inputs �eld of the block's con�guration window must be set at 2. The same for the Concatenate
Dimension �eld (see Fig.4.9).
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As a result, the two signals (the one identical to the other), at the input of the block, organized
in frames of 1024 values, are concatenated and transferred to the output in the form of a single
signal of dimension [1024×2], which is intended by the following ALSA Audio Playback block
as a stereo signal (with two identical channels).

4.3.4 ALSA Audio Playback

Figure 4.10: Con�guration window of the ALSA Audio Playback block

The ALSA Audio Playback block represents the Raspberry Pi2's analog output. Its task
is to perform the digital-to-analog conversion of the signal and send it to the sound card for
playback. This block relies on the Raspberry Pi2's ALSA audio driver, that manages all audio
devices connected to the Raspberry Pi2, including the USB sound card previously described.

The input signal must have a dimension of [Nx2], where N is the number of samples in each
frame and 2 is the number of audio channels (in this speci�c case N=1024). Each sample must
be represented in the int16 format.

With reference to the con�guration window shown in Fig.4.10, the sampling rate is selected
in the Audio sampling frequency �eld. In this model, and in all the following ones, a sampling
rate of 48000 samples/s was used, corresponding to the highest possible value.

The sound card's identi�er must be entered in the Device Name �eld: The input is de�ned by
the syntax 'plughw:card,device', where the two parameters card and device can be easily obtained
by using the aplay -l command in a Linux Shell (sect.2.1). The result will be an on-screen list
of all the devices connected to the Raspberry Pi2 and their corresponding parameters card and
device.

If the con�guration of the sound card described in chapter 2 is properly performed, the Device
Name �eld will always have the form 'plughw:0,0'.
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4.3.5 Pulse Generator

The Pulse Generator block generates square wave pulses at regular intervals, that can be set
through the con�guration window shown in Fig.4.11.

Figure 4.11: Con�guration window for the Pulse Generator block

The only relevant parameters for this block are the Amplitude, set at its highest possible
value 215−1, the repetition Period, set at 0.5 s, and the Pulse Width, set at 10%. The remaining
�elds are completed with default settings.

This signal is used to turn on and o� the Raspberry Pi2's LED when the project is running.

4.3.6 LED

The LED block is part of the Simulink library containing speci�c blocks for Raspberry Pi boards.
Its task is to turn on or o� the user-controllable LED provided by the Raspberry Pi2 hardware.
The corresponding con�guration window is shown in Fig.4.12.

The only �elds of interest are those concerning the choice of the Raspberry Pi model used,
de�ned in the Board �eld, and the LED to be controlled, through the LED �eld. The proper
settings are shown in Fig.4.12.
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Figure 4.12: Con�guration window of the LED block

4.4 Settings for the hardware execution of the project

Once the Simulink project has been realized and tested through simulations, the Raspberry Pi2
can step in. In order for the project to be implemented on the hardware, it is essential to provide
Simulink with the necessary information to identify the Raspberry Pi2 in which to download the
executable �le.

Within the Simulink environment select the tools/run on target hardware/options menu,
as shown in Fig.4.13, in order to select the target hardware. In this case the choice is, obviously,
�Raspberry Pi� (Fig.4.14).

Figure 4.13: Prepare to run

In the following window (Fig.4.15) you are required to enter the parameters concerning Host
Name, User Name, Password, Build directory.

If the default con�guration is unchanged, the parameters will be those used during the OS
installation phase, shown in Fig.1.27. Otherwise, the speci�c parameters chosen during the OS
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Figure 4.14: Target hardware setting

installation phase must be used.

Figure 4.15: Con�guration parameters

It is possible to set just one Raspberry Pi2 at a time, even in the event of more than one
device connected to the PC through a network switch. Each Raspberry Pi2 will be unambiguously
identi�ed through its Host Name.

The Enable overrun detection is a functionality that can be activated at the user's discretion.
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With its activation, it is possible to monitor the occurrence of possible situations in which the
Raspberry Pi2 execution does not respect the timing required by the project.

Once Simulink has been properly con�gured to interact with the target Raspberry Pi2, it is
possible to compile the project, generating the executable, and perform the Deploy to Hard-
ware step (Fig.4.16). In order to successfully complete this operation, the user must have the
writing rights on the Matlab current folder.

The project will be automatically executed as soon as the deploy procedure is completed.

Figure 4.16: Deploy To hardware

It is now possible to observe the sine wave generated by the Raspberry Pi2 through an
oscilloscope connected to the sound card output, as shown in Fig.4.3. The expected result is
shown in Fig.4.17, representing an example of actual measurement performed in our lab.

Detailed information about the di�erent ways to start and stop the execution of a Simulink
project on a Raspberry Pi2 board is given in the following section.

4.5 Hardware execution of the project

Any Simulink project already loaded on the hardware, through the previously described �Deploy
to Hardware� procedure, can be executed independently from Simulink. The executable �le is
saved in the Build Directory of the the micro SD memory card. Generally speaking, there are
three di�erent modes to launch the execution of a project on a Raspberry Pi2:

1. Launching the execution within Simulink.

2. Launching the execution with Matlab commands.

3. Launching the execution with Linux commands.

Each mode is described in the following sections.
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Figure 4.17: Signal displayed on the oscilloscope

Figure 4.18: Linux command �top�

4.5.1 Launching the execution within Simulink

The hardware execution of a project can be launched directly from Simulink, by means of the
�Deploy to Hardware� (Fig.4.16) procedure or using the �External Mode� simulation setting.

� Deploy to Hardware : with the previously described Deploy to Hardware procedure, the
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executable is automatically launched as soon as the project compilation is completed.

Please note that the Deploy to Hardware procedure saves the executable and its auxiliary
�les on the Raspberry Pi2's memory card. This step is essential if you want to run the
project later through Matlab or Linux commands, as they require the executable �le to be
already in the Raspberry Pi2's memory card.

It si important to underline, moreover, that the �deploy to hardware� mode deactivates the
connection between the Raspberry Pi2 and the Simulink environment, making it impossible
to stop the project within Simulink.

In order to stop the execution it is necessary to open a Linux Shell (Section 1.7), identify
the running process to be stopped and force its termination, as described below.

First of all, a list of the processes running on the device must be obtained using the top
command (Listing 4.1) within the Linux Shell1, as shown in Fig.4.18:

0 top

Listing 4.1: List of running processes

Once the PID code associated to the process to be stopped, for example �SineWave�, is
found, the �top� window can be closed pressing the q key. The process can now be stopped
using the kill command (Listing 4.2).

0 sudo kill PID

Listing 4.2: List of running programs

The second possibility o�ered by Simulink to run a project on a Raspberry Pi2 is the External
mode.

� External mode : the execution is activated setting the External mode, as shown in
Fig.4.19, and starting the Simulink simulation as usual, clicking Run (Fig.4.20).

Contrary to the previous case, the �External Mode� keeps active the connection between
Simulink and the Raspberry Pi2, allowing to stop the execution with the Stop button, as
shown in Fig.4.21. In this case, however, the executable and the auxiliary �les needed for
a later execution outside Simulink will not be saved on the Raspberry Pi2's memory card.

This mode is particularly appropriate during the design phase of the project. During the
External Mode execution, in fact, it is possible to change the project's parameters (e.g.,
the sine's amplitude) and to observe their e�ects in real time.

Please observe, however, that the execution in External Mode implies a greater computa-
tional burden for the Raspberry Pi2 compared to the execution activated by the Deploy
to Hardware procedure. This is due to the continuous information exchange between the
hardware and Simulink during the External Mode execution.

1Please note, by the way, that the top command provides also the computational burden %CPU of each
process.
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Figure 4.19: External Mode activation

Figure 4.20: Project execution in External Mode

Figure 4.21: Project stop in External Mode

4.5.2 Launching the execution with Matlab commands

In order to launch the hardware execution of a project using Matlab commands, it is necessary
to create the �raspberrypi � object �h� as shown2 in Listing 4.3, and to invoke the command
run , entering as input parameter the name of the project to be launched (Listing 4.4).

h=raspberrypi('169.254.0.3 ');

Listing 4.3: Matlab command to create a raspberrypi object

run(h, 'project name')

Listing 4.4: Matlab command to execute a project on a Raspberry Pi2

2Here the raspberrypi command is used with HostName as the only parameter. Note that, as recalled in
Section 1.7, Matlab assumes by default that HostName is equal to the IP address assigned to the device. The
parameters UserName, Password and BuildDir are assumed at their default settings.
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If the executable is not saved in the default BuildDir it is necessary to run the extended
command �h=raspberrypi(...)� in Listing 4.5, specifying the new BuildDir. It is now possible
to launch the command run (Listing 4.4).

h=raspberrypi('HostName ','UserName ','Password ','BuildDir ') %new object for
device raspberry pi

Listing 4.5: Matlab command to create a raspberrypi object

The project execution can be stopped at any time, using the command:

stop(h, 'project name')

Listing 4.6: Matlab command to stop the execution

4.5.3 Launching the execution with Linux commands

Any executable saved into the Raspberry Pi2's memory card cab be launched by means of the
Linux Shell. The �rst step is to open the Linux Shell with the MATLAB commands:

h=raspberrypi (" HostName ");

h.openShell('ssh')

Listing 4.7: Opening a Linux Shell within MATLAB

Then the BuildDir of the project must be selected using the Linux command:

0 cd "BuildDir"

Listing 4.8: Opening the �BuildDir�

The project execution is �nally launched with the Linux command

0 sudo ./" project name_rtt "/MW/" project name"

Listing 4.9: Project execution

For the experience here described, we chose a BuildDir di�erent from the default one, as
shown in Fig.4.22. In this case, in fact, the BuildDir is /home/pi/Sin .

Coming back to the Linux Shell it is possible to access and display the BuildDir 's content
launching the commands (see Fig.4.23)

0 cd Sin

dir

Listing 4.10: Entering the BuildDir

To run the project, it is enough to launch the command in Listing 4.11
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Figure 4.22: Project's Build Directory

Figure 4.23: Project's Build Directory

Figure 4.24: Project execution within the Linux environment
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0 sudo ./ SinWave_rtt/MW/SinWave

Listing 4.11: Linux directory access

In general, it is possible to run the project using the syntax reported in Listing 4.12, specifying
each time the project name and, if necessary, the BuildDir (in case it is di�erent from the default
one). In particular, this command can be launched when the Shell is initialized, with no need to
access the speci�c directory of the project, as done in Listing 4.8.

0 sudo ./home/pi /" BuildDir /" project name_rtt "/MW/" project name"

Listing 4.12: Project execution

In order to stop the execution, it is enough to press the Ctrl+C keys.
As an alternative, you can use the kill PID command, identifying in advance the PID code

of the project that must be stopped with the top command (Listing 4.1) and stopping the project
with the kill command (Listing 4.2).
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Chapter 5

Raspberry Pi2 as a digital �lter

Thanks to the external ADC/DAC introduced in Chapter 2, the Raspberry Pi2 is provided
with an (otherwise absent) analog input (microphone input) and with a further analog output
(headphone output). It is therefore possible to use Raspberry Pi2 boards for the digital processing
of input signals.

The realization of a Finite Impulse Response (FIR) digital �lter, described below, is an
example of this kind of application.

5.1 Equipment required for this experience

To carry out the experimental activity explained below, a signal generator and an oscilloscope
are needed, along with the following items:

�Nr.1 Raspberry Pi2 (Fig.5.1(a)) �Nr.1 USB-micro USB cable (Fig.5.1(b))
�Nr.1 micro SD memory card (Fig.5.1(c)) �Nr.1 USB-LAN adapter (Fig.5.1(d))
�Nr.1 Network cable (Fig.5.1(e)) �Nr.1 External audio card (Fig.5.1(f))
�Nr.2 3.5mm-RCA jack cables (Fig.5.1(g)) �Nr.2 BNC-RCA adapter (Fig.5.1(h))

5.2 Raspberry Pi2 as digital �lter

The Simulink model for implementing a FIR �lter on a Raspberry Pi2 board is shown in Fig.5.2.
Fig.5.3 shows, instead, the connections between the devices constituting the workstation.
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(a) Raspberry Pi2 (b) USB-micro USB
cable

(c) Micro SD memory
card

(d) USB to LAN
adapter

(e) LAN cable (f) External au-
dio card

(g) 3.5mm-RCA
Stereo jack cable

(h) RCA-BNC
adapter

Figure 5.1: Equipment

Figure 5.2: Fir �lter Simulink model with Raspberry Pi2

In order to make the scheme shown in Fig.5.2 as clear as possible, four macroblocks have
been highlighted: Input, Digital �lter, Output and Control LED.

The Input macroblock is the input stage of the system. The signal produced by an external
signal generator is acquired by the analog-to-digital converter represented by the ALSA Audio
Capture block and converted by the Data Type Conversion block from the int16 format,
adopted byALSA Audio Capture block, into the �oating point format required by theDigital
Filter Design block.

The Digital �lter macroblock represents the digital �lter itself. The �lter characteristics
are selected by the user through the FDATool design tool, that opens when clicking on the

G. Pasolini, A. Bazzi, M. Mirabella 54 Simulink De�ned Radio



Raspberry Pi2 - TLC

Figure 5.3: Raspberry Pi2 Input/Output connection scheme

block.

The Output macroblock is the output stage. The �ltered signal, represented in the �oating
point format, is �rst converted by the Data Type Conversion1 block into the int16 format
required by the following stage, and then it is sent to the ALSA Audio Playback block,
representing the analog output port.

Comparing this macroblock with the similar Raspberry Pi output macroblock used in the
previous project (Fig.4.2), you can notice the absence of the Matrix Concatenate block. In
this case, in fact, it is not necessary to duplicate the signal to produce the �stereo� channel
required by the ALSA Audio Playback block. This is possible because the signal produced
by the ALSA Audio Playback block is already in the stereo format.

The Control LED macroblock, not strictly relevant for the aim of this project, will not be
discussed, as it has already been described in Section 4.2.3.

5.3 Elementary blocks used

The list of the elementary blocks used for the project realization is provided hereafter, along
with the reference to the sections in which their functioning is described.

�ALSA Audio Capture (Section 5.3.1) �Digital Filter Design (Section 5.3.2)
�Data Type Conversion (Section 4.3.2) �ALSA Audio Playback (Section 4.3.4)
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5.3.1 ALSA Audio Capture

Figure 5.4: ALSA Audio Capture block

The ALSA Audio Capture block represents the sound card's ADC converter: It receives
the analog signal provided by an external source and convert it into a digital signal. This block
is, therefore, the analog input port of the system.

The ALSA Audio Capture block is controlled by the ALSA driver, that manages all the
audio devices connected to the hardware, including the USB sound card described in chapter 4
that hosts the microphone input.

This block generates a signal with dimension [Nx2], where N is the number of samples grouped
in each frame and 2 is the number of audio channels. Each sample is represented in the int16
format, that is, as a 15 bits integer+1 sign bit.

The sampling frequency is selected in the Audio sampling frequency �eld of the con�guration
window shown in Fig.5.4. In this model, and in all the following ones, a sampling rate of 48000
samples/s was used, corresponding to the highest possible value.

The sound card's identi�er must be entered in the Device Name �eld, according to the syntax
�plughw:card,device�. The card and device parameters can be easily detected with the arecord -l
command (section 2.1, Listing 2.6). As shown in section 2.1, a list of the input devices connected
to the Raspberry Pi2 will be displayed. If the sound card con�guration is properly carried out,
the Device Name will always have the form 'plughw:0,0'.

It is essential to activate the microphone input using the alsamixer command (section 2.1,
Fig.2.7).
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5.3.2 Digital Filter Design

Figure 5.5: Con�guration window of the Digital Filter Design. block

The speci�cations of the FIR �lter are introduced by means of the Digital Filter Design
- FDATool block, whose window (displayed after a double click on the block itself) is shown in
Fig.5.5.

We won't describe here this powerful �lter design tool and its functioning. We will focus our
attention only on the sampling rate Fs, required by the tool as an input parameter.

For the correct functioning of the modelled system, the sampling rate must necessarily be the
one used in the ALSA Audio Playback (par.4.3.4) and ALSA Audio Capture (par.5.3.1)
blocks. In this speci�c case, then, we set Fs=48000 .

As for the input signal, generated by an external signal generator, it is necessary to remember
that, in order to ful�l the conditions set by the sampling theorem with a good safety margin, its
frequency range must be comprised in the [0 20 kHz] interval.

5.3.3 Data Type Conversion

The Data Type Conversion block is described in Section 4.3.2. In the project here considered
this block adopts the same con�guration shown in Fig.4.8.

5.3.4 ALSA Audio Playback

The ALSA Audio Playback block represents the DAC converter of system; his functioning is
explained in Section 4.3.4. In the project here considered this block adopts the same con�guration
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shown in Fig.4.10.

5.3.5 Implementation and test of the digital �lter

Once the Simulink project has been realized and tested through simulations, it is possible to
carry out the deploy to hardware procedure, as described in Section 4.4. The project will be
automatically executed as soon as the deploy procedure is completed.

In order to test the project, a pass-band �lter with an attenuation of 80 dB in the intervals
0-5 kHz and 10-24 kHz has been designed. See Fig.5.5 for the corresponding con�guration of the
Digital Filter Design block.

Connecting the Raspberry Pi2 input port to the signal generator and the output port to the
oscilloscope, as shown in Fig.5.3, it is possible to test the �lter behaviour. In particular, changing
the frequency of an input sine wave in the [0-20 kHz] interval, the �ltering e�ect can be easily
observed, as shown in Fig.5.6 and in Fig.5.7.

Figure 5.6: Measured �lter's output: sine wave at 6.1KHz
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Figure 5.7: Measured �lter's output: sine wave at 9.2 KHz





Chapter 6

Baseband modulations with Raspberry

Pi2

In this chapter, we introduce two Simulink projects for the hardware implementation of
baseband digital transmitters with Pulse Amplitude Modulation - PAM. As it is known, a general
M-PAM modulator associates at each symbol ai a suitable baseband waveform g(t), generating
a PAM signal represented by the following equation:

s(t) =
∞∑

i=−∞
aig(t− iT ), (6.1)

where

� ai represents the generic symbol belonging to a M-ary alphabet;

� g(t) is the waveform associated to each symbol;

� T is the time interval between one symbol and the following one.

In order to better understand the projects described below, it is useful to remind that each
M-PAM symbol ai represents a number of bits given by

bsymbol = log2M. (6.2)
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The project of a 2-PAM transmitter will be �rstly described in the following. In this case, the bits
{0, 1} to be transmitted are mapped into M = 2 possible symbols (for example ai ∈ {−1,+1}).

Such model will evolve later in a 4-PAM transmitter, in which each couple of bits is mapped
into M = 4 symbols (for example ai ∈ {−1,−1

3 ,
1
3 ,+1}).

6.1 Equipment required for this experience

To carry out the experimental activity explained below, an oscilloscope is needed, along with the
following items:

�Nr.1 Raspberry Pi2 (Fig.6.1(a)) �Nr.1 USB-micro USB cable (Fig.6.1(b))
�Nr.1 Micro SD memory card (Fig.6.1(c)) �Nr.1 adattatore USB-LAN (Fig.6.1(d))
�Nr.1 Network cable (Fig.6.1(e)) �Nr.1 Scheda audio esterna (Fig.6.1(f))
�Nr.1 3.5mm-RCA jack cable (Fig.6.1(g)) �Nr.1 adattatore BNC-RCA (Fig.6.1(h))

(a) Raspberry Pi2 (b) USB-micro USB
cable

(c) Micro SD memory
card

(d) USB to LAN
adapter

(e) LAN cable (f) External au-
dio card

(g) 3.5mm-RCA
stereo jack cable

(h) RCA-BNC
adapter

Figure 6.1: Equipment

6.2 Raspberry Pi2 as 2-PAM transmitter

The Simulink model for implementing a 2-PAM transmitter on a Raspberry Pi2 board is shown
in Fig.6.2. Fig.6.3 shows, instead, the interconnections among the di�erent devices constituting
the workstation.

In order to make the scheme shown in Fig.6.2 as clear as possible, four macroblocks have
been highlighted.

The �rst macroblock, called BaseBand Modulation , contains all the Simulink blocks
needed to implement the 2-PAM modulation. The signal at its output port goes through an
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Figure 6.2: Simulink model 2-PAM modulation

Figure 6.3: Connection scheme

Automatic Gain Control - AGC stage, that adapts the signal's dynamic range to the level
required by the following macroblock, called Raspberry Pi output (see Section 4.2.2), repre-
senting the Raspberry Pi2's analog output.

The Control LED macroblock, discussed in Section 4.2.3, will be no more considered.

6.3 Elementary blocks used

The list of the elementary blocks used for the project realization is provided hereafter, along
with the reference to the sections in which their functioning is described.

�Bernoulli Binary Generator (Section 6.3.1) �Max-Divide-Gain (Section 6.3.5)
�M-PAM Modulator Baseband (Section 6.3.2) �Data Type Conversion (Section 4.3.2)
�Complex to Real-Imag (Section 6.3.3) �Matrix Concatenate (Section 4.3.3)
�Raised Cosine Transmit Filter (Section 6.3.4) �ALSA Audio Playback (Section 4.3.4)
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6.3.1 Bernoulli Binary Generator

The Bernoulli Binary Generator block is the binary information source. It generates a
random sequence of independent bits with Bernoulli statistics: the bit 0 is generated with
probability Probability of a zero and the bit 1 with probability 1-Probability of a zero.

Figure 6.4: Con�guration window of the Bernoulli Binary Generator block

The con�guration window of this block (Fig.6.4) asks �rst of all to specify the Probability of
a zero, that will be assigned the value 0.5, in order to have a sequence of equiprobable bits.

The Initial Seed �eld concerns the seed used by the random number generator. In our case,
the value speci�ed is 61, but the proper functioning of the model is independent of the chosen
value.

The Sample Time parameter represents the time interval between the generation of a bit and
the following one. The reciprocal of such parameter Br = 1

Sample T ime represents the bit rate [ bits ]
of the binary generator, that is, the number of bits generated per second.

The value to assign to Sample Time is strictly connected to

� the Audio Sampling Frequency de�ned in the ALSA Audio Playback block (sect.4.3.4),

� the upsampling factor Output samples per symbol de�ned in theRaised Cosine Transmit
Filter (further details about this block will be given in section 6.3.4),

� the number of bits bsymbol associated to each modulation symbol (eq.(6.2)).

In particular it must be

Br
bsymbol

·Output samples per symbol = Audio Sampling Frequency. (6.3)
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Recalling that Br = 1
Sample T ime , it is, therefore

Sample T ime =
Output samples per symbol

bsymbol ·Audio Sampling Frequency
. (6.4)

Please observe that only speci�c values of Sample Time are allowed. In fact, the Audio
sampling frequency is dictated by the ALSA Audio Playback block, bsymbol depends on the
adopted modulation and Output Samples per symbol must be an integer1.

In this speci�c case, as Audio Sampling Frequency=48000, Output samples per symbol=20
and bsymbol = log2M = 1, it results Sample T ime = 20

48000 .

The Sample per frame �eld speci�es the number of bits grouped2 in a single frame, established
in this speci�c case as 1000. Such choice is, however, not binding.

Finally, the Output data type is maintained at the default setting double.

6.3.2 M-PAM Modulator Baseband

The M-PAM Modulator Baseband block converts the input bits sequence into a symbols
sequence. In the 2-PAM case here considered, an output symbol a is generated for each input
bit b (as dictated by eq.(6.2)), according to the law de�ned in table 6.1

Table 6.1: 2-PAM modulator. Symbol encoding
b a

0 -S

1 S

where the value of S depends on the choice made in the block's con�guration window for the
Normalization Method �eld, that will be discussed later.

The �rst input parameter to set in the block's con�guration window, shown in Fig.6.5, is the
M-ary number of possible output symbols. In the 2-PAM case it is M-ary number=2.

The Input Type �eld relates to the type of input data. The Bernoulli Binary Generator
block, preceding the examined block, generates bits, and so this �eld must be set accordingly
(bit).

The Constellation ordering �eld de�nes the law regulating the correspondence between bits
and symbols. In the 2-PAM case such correspondence is the one shown in table 6.1, independently
of the choice made (Gray o Binary).

For the Normalization Method �eld the Peak Power option is chosen. The sequence of symbols
is thus normalized in terms of peak power, whose value, referenced to 1 Ohm, is de�ned by the
�eld Peak power, referenced to 1 Ohm (watts). In the project here considered the Peak power is
1.

The resulting constellation is shown in Fig.6.6.

According to the previous choices, the output of theM-PAM Modulator Baseband block
is a sequence of +1 e -1. Note that, despite the fact that symbols are purely real quantities,
the M-PAM Modulator Baseband block generates each of them in the complex format,
associating to each symbol an imaginary component with null value (e.g., [..., 1+ i0,−1+ i0, ...]).

1The Output Samples per symbol parameter will be discussed in section 6.3.4.
2As observed in section 4.3.1, Raspberry Pi2 boards operate on blocks of data (frames) for e�ciency reasons.
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Figure 6.5: Con�guration window of the M-PAM Modulator Baseband block

6.3.3 Complex to Real-Imag

The M-PAM Modulator Baseband block is followed by the Complex to Real-Imag block,
with the purpose of converting the symbols from the complex into the real format, removing
the imaginary (null) components (Fig.6.7). It is a necessary conversion as the Raspberry Pi2's
output system requires real data.

6.3.4 Raised Cosine Transmit Filter

The Raised cosine transmit �lter generates the PAM signal, according to eq.(6.1), starting
from the symbols at its input. The corresponding con�guration window is shown in Fig.6.8.

In particular, this block associates to each symbol generated by the M-PAM Modulator
Baseband block (one symbol each Sample Time in the 2-PAM case here considered) the sampled
values of the waveform g(t), taken with a sampling interval Tg.

The ratio Sample T ime
Tg

de�nes the Output Samples per symbol parameter, set at 20 in the
present project. In general, the value to assign to this parameter depends on:

� the Audio sampling frequency and bsymbol. In fact, once the Audio sampling frequency is
de�ned (dictated by the ALSA Audio Playback block) and bsymbol is known (given the
adopted modulation) the Output Samples per symbol must be an integer such that eq.(6.4)
is satis�ed. As observed in section 6.3.1, this poses a condition to the values of Sample
Time.
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Figure 6.6: 2-PAM Constellation

Figure 6.7: Con�guration window of the Complex to Real-Imag block

� the bandwidth B of the PAM signal, which is function3 of G(f) = F{g(t)}: Given B, the
minimum value of Tg that ful�ls the sampling theorem is such that 1

Tg
≥ 2B. The parameter

Output Samples per symbol=Sample T ime
Tg

must be, therefore, an integer value such that the

condition 1
Tg
≥ 2B is ful�lled.

Both the above conditions must be ful�lled by the value chosen for theOutput Samples per symbol

3The symbol F{·} represents the continuous-time Fourier transform.
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Figure 6.8: Con�guration window of the Raised cosine transmit �lter block

parameter.

The duration of the waveform g(t) is de�ned by the Filter span in symbols parameter, set at
10. This value is meant normalized with respect to Sample Time.

As a consequence of the previous choices, the number of samples of g(t) that are generated
by the Raised cosine transmit �lter for each input symbol is

Output Samples per symbol · Filter span in symbols = 20 · 10 = 200.

This sequence represents the impulse response of the raised-cosine �lter and therefore, as it
is a FIR �lter, it is the sequence of its coe�cients.

The particular waveform g(t) is chosen setting the Filter Shape �eld. The possible choices are
Normal, corresponding to the raised cosine waveform, and Square root, referring to the square
root raised cosine waveform. In this project the Filter Shape �eld is set at Normal.

The Rollo� factor parameter represents the �lter's roll-o� factor. Its value, that a�ects the
signal bandwidth B, can be freely chosen within the interval [0, 1].

The Linear amplitude �lter Gain parameter represents the �lter gain, and is set at its default
value 1.

Consistently with the previous blocks, also the Raised Cosine Transmit Filter works in
frame based mode and the Input processing �eld has been consequently set.

The Rate options �eld, set at Enforce Single Rate Processing, forces the block to adapt the
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output frame length so that the input and output rates are the same, independently of the
upsampling operation performed by the �lter itself.

6.3.5 Max-Divide-Gain (Automatic Gain Control)

Figure 6.9: Automatic Gain Control

The Automatic Gain Control macroblock adapts the signal's dynamic range to the re-
quirements of the Raspberry Pi2�'s output port. The macroblock structure, shown in Fig.6.9,
is based on the Max, Divide and Gain elementary blocks.

For each input frame, in particular, the Automatic Gain Control macroblock performs,
�rst of all, a normalization, dividing all the samples of each frame by their maximum value, then
carries out a multiplication by K = 214 − 1. The con�guration windows of the three blocks are
shown in Fig.6.10(a), Fig.6.10(b) and Fig.6.11, respectively.

As a consequence of this operation, the highest value in each frame is equal to 214 − 1,
consistent with the highest value required by the Raspberry Pi2�'s output port, equal to 215−1.

In principle, the gain could be set at 215 − 1, but some malfunctioning was observed with
such con�guration. Such problems were solved setting the dynamic range to 214 − 1 .

6.3.6 Implementation and test of the 2-PAM transmitter

Once the Simulink project has been realized and tested through simulations, it is possible to
carry out the Deploy to Hardware procedure, as described in Section 4.4. The project will be
automatically executed as soon as the deploy procedure is completed.

Connecting the Raspberry Pi2's output to the oscilloscope, following the scheme in Fig.6.3,
it is possible to observe the typical shape of a 2-PAM signal with raised cosine �ltering, as shown
in Fig.6.12.

The eye diagram shown in Fig.6.13 shows, however, an unexpected degradation, that deserves
speci�c investigations. Observing a larger time interval (Fig.6.14) unexpected �uctuation are
detected, most likely caused by the low quality of the digital-to-analog conversion.
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(a) Divide (b) Max

Figure 6.10: Max and Divide blocks

Figure 6.11: Gain block

6.4 Raspberry Pi2 as a 4-PAM transmitter

In the following section we will describe the Simulink model for the hardware implementation of
a 4-PAM transmitter. In this case a modulation symbol ai is generated for each couple of input
bits (for example ai ∈ {−1,−1

3 ,
1
3 ,+1}).
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Figure 6.12: Measured 2PAM signal

Figure 6.13: Measured 2-PAM eye diagram

The model of the 4-PAM transmitter, shown in Fig.6.15, shows minimal variations compared
to that of the 2-PAM transmitter (Fig.6.2). The changes concern only the Bernoulli Binary
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Figure 6.14: ADC/DAC tension levels �uctuations

Generator and M-PAM Modulator blocks. For this reason, in the following section we will
discuss only the changes concerning such blocks, whereas the con�gurations of the remaining
blocks are unchanged with respect to the 2-PAM transmitter.

Figure 6.15: Simulink model 4-PAM modulator

6.5 Elementary blocks used

The list of the elementary blocks used for the project realization is provided hereafter, along
with the reference to the sections in which their functioning is described.

�Bernoulli Binary Generator (Section 6.5.1) �Max-Divide-Gain (Section 6.3.5)
�M-PAM Modulator Baseband (Section 6.5.2) �Data Type Conversion (Section 4.3.2)
�Complex to Real-Imag (Section 6.3.3) �Matrix Concatenate (Section 4.3.3)
�Raised Cosine Transmit Filter (Section 6.3.4) �ALSA Audio Playback (Section 4.3.4)

6.5.1 Bernoulli Binary Generator

As it is known, the Bernoulli Binary Generator represents the binary information source.
It generates a random sequence of independent bits with Bernoulli statistics. Comparing its
con�guration window, shown in Fig.6.16, with that of the same block for the 2-PAM modulator,
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shown in Fig.6.4, the only di�erence is the Sample Time parameter, that represents the time
interval between the generation of a bit and the following one.

As anticipated in section 6.3.1, the value to assign to this parameter is strictly related to
the Audio Sampling Frequency, de�ned in the ALSA Audio Playback block (sect.4.3.4), to
the number of Output samples per symbol, de�ned in the Raised Cosine Transmit Filter
(sect.6.3.4), and to the number of bits bsymbol associated to each symbol of the chosen modulation
(eq.(6.2)). We already pointed out, in particular, that for a generic M-PAM modulation it is:

Sample T ime =
Output samples per symbol

bsymbol ·Audio Sampling Frequency
.

In this speci�c case, as Audio Sampling Frequency=48000, Output samples per symbol=20 and
bsymbol = log2M = 2, it is Sample T ime = 20

2·48000 , as shown in Fig.6.16.

Figure 6.16: Con�guration window of the Bernoulli Binary Generator block

All the other parameters are the same adopted for the 2-PAM transmitter (sect.6.3.1).

6.5.2 M-PAM Modulator Baseband

As explained in section 6.3.2, theM-PAM Modulator Baseband block converts the sequence
of input bits into a sequence of symbols. In the 4-PAM case, in particular, each pair bb of input
bits corresponds a symbol a (as it results from equation (6.2)), according to a correspondence
law which is, in principle, arbitrary. The correspondence adopted in this project is shown in
table 6.2, where the values of S1 and S2 depend on the choice made in the block's con�guration
window for the Normalization Method �eld.
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Table 6.2: 4-PAM modulator.Symbol encoding
bb a

00 -S2
01 -S1
11 S1
10 S2

The only di�erence between the con�guration chosen for the 2-PAM modulator, shown in
Fig.6.5, and the 4-PAM modulator relates to the M-ary number parameter, that must be set
at 4, consistently with the 4-PAM modulation here considered. The remaining parameters are
unchanged.

The con�guration window resulting in the present case is shown in Fig.6.17.

Figure 6.17: Con�guration window of the M-PAM Modulator Baseband block

With such choices, the output of the M-PAM Modulator Baseband block is a sequence
of symbols −S2 = −1, −S1 = −1

3 , S1 = +1
3 , S2 = +1. The corresponding constellation is shown

in Fig.6.18.

6.5.3 Complex to Real-Imag

The Complex to Real-Imag block is described in Section 6.3.3. In the project here considered
this block adopts the same con�guration shown in Fig.6.7.

G. Pasolini, A. Bazzi, M. Mirabella 74 Simulink De�ned Radio



Raspberry Pi2 - TLC

Figure 6.18: 4-PAM constellation

6.5.4 Raised Cosine Transmit Filter

The Raised Cosine Transmit Filter is described in Section 6.3.4. In the project here con-
sidered this block adopts the same con�guration shown in Fig.6.8.

6.5.5 Max-Divide-Gain (Automatic Gain Control)

The Max-Divide-Gain blocks, constituting the automatic gain control macroblock, are de-
scribed in Section 6.3.5. In the project here considered these blocks adopt the same con�guration
shown in Fig.6.10 and in Fig.6.11.

6.5.6 Data Type Conversion

The Data Type Conversion block is described in Section 4.3.2. In the project here considered
this block adopts the same con�guration shown in Fig.4.8.

6.5.7 Matrix Concatenate

The Matrix Concatenate block is described in Section 4.3.3. In the project here considered
this block adopts the same con�guration shown in Fig.4.9.
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6.5.8 ALSA Audio Playback

The ALSA Audio Playback block is described in Section 4.3.4. In the project here considered
this block adopts the same con�guration shown in Fig.4.10.

6.5.9 Implementation and test of the 4-PAM transmitter

Once the Simulink project has been realized and tested through simulations, it is possible to
carry out the Deploy to Hardware procedure, as described in Section 4.4. The project will be
automatically executed as soon as the deploy procedure is completed.

Connecting the Raspberry Pi2's output to the oscilloscope, following the scheme in Fig.6.3,
it is possible to observe the typical shape of a 4-PAM signal with raised cosine pulses, as shown
in Fig.6.19

Figure 6.19: 4-PAM signal

6.6 PAM modulations with square pulses

The 2-PAM and 4-PAM transmitters previously described adopt a raised cosine shaping �lter,
realized through the Raised Cosine Transmit Filter.

For didactic purposes it could be useful to consider also 2-PAM and 4-PAM transmitters with
square pulses. The correspondent models are shown in Fig.6.20 and in Fig.6.21.

Comparing the new models with the previous ones, shown in Fig.6.2 and 6.15, it is immedi-
ately evident that the only di�erence is in the BaseBand Modulation macroblock, described
in the following section.
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Figure 6.20: 2-PAM transmitter with square pulses

Figure 6.21: 4-PAM transmitter with square pulses

6.6.1 BaseBand Modulation

In order to realize PAM transmitters with square pulses, starting from the previously discussed
PAM transmitters with raised cosine pulses (see Fig.6.2 and Fig.6.15), it is enough to replace the
Raised Cosine Transmit Filter with a FIR Interpolation block that, properly con�gured,
works as a square pulse shaping �lter.

The new BaseBand Modulation macroblocks for the 2-PAM and 4-PAM transmitters with
square pulses are shown in Fig.6.22.

The con�guration window of the FIR Interpolation block is shown in Fig.6.23. As it plays
the role of shaping �lter, this block must necessarily perform an interpolation (for each input
symbol, it must generate the sampled sequence of the corresponding waveform g(t)). Also in
this case an upsamplig factor equal to 20 is adopted, hence we set Interpolation factor=20. This
parameter is the correspondent, for the FIR Interpolation block, of the Output samples per
symbol parameter requested by the Raised Cosine Transmit Filter (see Fig.6.8).

The FIR �lter coe�cients �eld requires to enter the �lter's coe�cients, that corresponds to
the samples of the desired waveform g(t). It follows that, in order to generate a square pulse
with duration equal to the symbol time, it is enough to enter a sequence of 1s as long as the
interpolation factor (equal to 20, in our case). For this purpose, the command ones (1,20) can
be used.

The remaining parameters of the con�guration window keep the default settings.
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(a) 2-PAM transmitter with square pulse shaping �lter.

(b) 4-PAM transmitter with square pulse shaping �lter.

Figure 6.22: Square pulse PAM modulations

6.6.2 2-PAM and 4-PAM transmitters with square pulses implementation
and check

Once the Simulink project has been realized and tested through simulations, it is possible to
carry out the Deploy to Hardware procedure, as described in Section 4.4. The project will be
automatically executed as soon as the deploy procedure is completed.

Connecting the Raspberry Pi2's output to the oscilloscope, following the scheme in Fig.6.3,
the signals can be �nally observed.

Fig.6.24 and 6.25 show, in particular, the 2-PAM and 4-PAM signals with square pulses.
The overshoots that can be observed are due to the �ltering carried out by the sound card, that
removes relevant spectral components of the signal spectrum.

The corresponding eye diagrams, shown in Fig.6.26 and 6.27 re�ect such overshoots and the
undesired �uctuations already observed in Section 6.3.6.

In Fig.6.28 an example of spectrum measurement is also reported.
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Figure 6.23: Con�guration window of the FIR Interpolation block

Figure 6.24: 2-PAM modulation with square pulses



Figure 6.25: 4-PAM modulation with square pulses

Figure 6.26: 2-PAM modulation. Eye diagram



Figure 6.27: 4-PAM modulation. Eye diagram

Figure 6.28: Spectrum of the 4-PAM signal with square pulses





Chapter 7

2-ASK and 4-ASK modulations with

Raspberry Pi2

The ASK (Amplitide Shift Keying) modulation represents digital data as variations in the
amplitude of a sine wave. L-ASK signals, with L denoting the possible amplitude values, can be
generated by product modulation, that is, by multiplying the L-PAM signal carrying the data
with a sine wave, usually denoted as carrier. The general expression of an L-ASK modulated
signal is given by:

s(t) = V0

∞∑
i=−∞

aig(t− iT ) cos(2πf0t), (7.1)

where

� V0 represents the carrier amplitude;

� ai represents the generic symbol;

� g(t) is the waveform associated to each symbol;

� T is the time interval between a symbol and the following one;

� f0 is the carrier frequency.
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In this chapter we describe the Simulink models for the hardware implementation of 2-ASK
and 4-ASK transmitters.

In particular, we will �rstly describe the project of the 2-ASK transmitter, in which each input
bit is mapped into a modulation symbol (for example ai ∈ {−1,+1}), then we will introduce
the 4-ASK transmitter, in which each couple of input bits is mapped over L = 4 symbols (for
example ai ∈ {−1,−1

3 ,
1
3 ,+1}).

Each project requires the carrier to be generated externally, through a signal generator. The
constraints imposed by the limited band ([0 20 kHz]) of the adopted DAC (see Chapter 2)
obviously in�uence the choice of the carrier frequency and the signal bandwidth: the �rst is of
the order of 15 kHz, the second of few kHz.

7.1 Equipment required for this experience

The experimental activity described in this chapter requires a signal generator, an oscilloscope
and the following equipment:

�Nr.1 Raspberry Pi2 (Fig.7.1(a)) �Nr.1 USB-micro USB cable (Fig.7.1(b))
�Nr.1 Micro SD memory card (Fig.7.1(c)) �Nr.1 USB-LAN adapter (Fig.7.1(d))
�Nr.1 Network cable (Fig.7.1(e)) �Nr.1 External audio card (Fig.7.1(f))
�Nr.1 3.5mm-RCA jack cable (Fig.7.1(g)) �Nr.2 BNC-RCA adapter (Fig.7.1(h))

(a) Raspberry Pi2 (b) USB-micro USB
cable

(c) Micro SD memory
card

(d) USB to LAN
adapter

(e) LAN cable (f) External au-
dio card

(g) 3.5mm-RCA
stereo jack cable

(h) RCA-BNC
adapter

Figure 7.1: Equipment
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7.2 2-ASK transmitter

The Simulink model for implementing a 2-ASK transmitter on a Raspberry Pi2 board is shown
in Fig.7.2. Fig.7.3 shows, instead, the interconnections among the di�erent devices constituting
the workstation.

Figure 7.2: 2-ASK transmitter: Simulink model

Figure 7.3: Raspberry Pi2's Input/Output connection scheme

In order to make the scheme shown in Fig.7.2 as clear as possible, six macroblocks have
been highlighted: Baseband Modulation, Raspberry Pi system input, Product, AGC-
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Automatic Gain Control, Raspberry Pi output and Control LED1.

7.2.1 Baseband Modulation

The Baseband Modulation macroblock is the 2-PAM modulator described in Section 6.2. Its
elementary blocksBernoulli Binary Generator,M-PAM Modulator Baseband, Complex
to Real-Imag and Raised Cosine Transmit Filter have been described in Sections 6.3.1,
6.3.2, 6.3.3 and 6.3.4 together with the corresponding con�gurations, that are unchanged in this
project.

The 2-PAM signal generated by this macroblock modulates the carrier, which is the output
of the Raspberry Pi system input macroblock.

7.2.2 Raspberry Pi system input

The Raspberry Pi system input macroblock receives a sinusoid (the carrier), generated by
an external signal generator, and adapts it to the format required by the subsequent block. This
macroblock, in particular, converts the stereo signal, at the ALSA Audio Capture 's output,
into a mono signal, through the Multiport Selector block, and the int16 format into a double
format, by means of the Data Type Conversion block.

7.2.3 Product

The Product block simply performs the multiplication between the carrier, outputting from the
Raspberry Pi system input block, and the modulating signal, outputting from the Baseband
Modulation block. The Product block acts, in other words, as a mixer, performing a product
modulation.

7.2.4 Max-Divide-Gain (Automatic Gain Control)

The Max-Divide-Gain blocks, performing the gain automatic gain control, are described in
Section 6.3.5. The project here considered adopts the same con�guration shown in Fig.6.10 and
in Fig.6.11.

7.2.5 Raspberry Pi output

The Raspberry Pi output macroblock represents the Raspberry Pi's output port. Its elemen-
tary blocks Data Type Conversion, Matrix Concatenate and ALSA Audio Playback
have been described in Sections 4.3.2, 4.3.3 and 4.3.4.

7.2.6 Control LED

The only aim of the Control LED macroblock is to intermittently turn on and o� the Raspberry
Pi2's led during the execution of the project, visually con�rming the that the project is running.
It has been discussed in Section 4.2.3.

1The Control LED macroblock has been discussed in Section 4.2.3. In the following, therefore, the details
of its functioning will not be provided any more.

G. Pasolini, A. Bazzi, M. Mirabella 86 Simulink De�ned Radio



Raspberry Pi2 - TLC

7.3 Elementary blocks used

The list of the elementary blocks used for the project realization is provided hereafter, along
with the reference to the sections in which their functioning is described.

�Bernoulli Binary Generator (Section 6.3.1) �Data Type Conversion (Section 4.3.2)
�M-PAM Modulator Baseband (Section 6.3.2) �Product (Section 7.3.8)
�Complex to Real-Imag (Section 6.3.3) �Max - Divide - Gain (Section 6.3.5)
�Raised Cosine Transmit Filter (Section 6.3.4) �Matrix Concatenate (Section 4.3.3)
�ALSA Audio Capture (Section 5.3.1) �ALSA Audio Playback (Section 4.3.4)
�Multiport Selector (Section 7.3.6)

7.3.1 Bernoully Binary Generator

The Bernoully Binary Generator block is described in Section 6.3.1. It represents the binary
information source. Its task is to produce an output random sequence of independent bits with
Bernoulli statistics. For the current project this block adopts the same con�guration shown in
Fig.6.4, that entails a bit rate Br = 48000

20 = 2400 bit
s .

7.3.2 M-PAM Modulator Baseband

The M-PAM Modulator Baseband block is described in Section 6.3.2. It converts the input
bits ∈ {0, 1} into 2-PAM symbols ∈ {-1, 1}. For the current project this block adopts the same
con�guration shown in Fig.6.5.

As recalled in Section 6.3.2, despite the fact that 2-PAM symbols are purely real quantities,
the M-PAM Modulator Baseband block generates each of them in the complex format,
associating to each symbol an imaginary component with null value (e.g., [..., 1+ i0,−1+ i0, ...]).
A Complex to Real-Imag block is thus needed in order to remove the imaginary components.

7.3.3 Complex to Real-Imag

The Complex to Real-Imag block is described in Section 6.3.3. Its task is to remove the
symbols' imaginary component. For the current project this block adopts the same con�guration
shown in Fig.6.7.

7.3.4 Raised Cosine Transmit Filter

The Raised Cosine Transmit Filter block is described in Section 6.3.4. For the current
project this block adopts the same con�guration shown in Fig.6.8.

7.3.5 ALSA Audio Capture

The ALSA Audio Capture block is described in Section 5.3.1. For the current project this
block adopts the same con�guration shown in Fig.5.4.
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Figure 7.4: Con�guration window of the Multiport selector block

7.3.6 Multiport selector

The Multiport selector block receives an input stereo signal, that is, a two-channel signal
produced by the ALSA Audio Capture block, and selects only one of the channels, producing
an output mono signal.

In the con�guration window shown in Fig.7.4, the only relevant parameter is Indices to output,
that is set at 2 in order to select the second channel only.

7.3.7 Data Type Conversion

The Data Type Conversion block is described in Section 4.3.2. It converts an input signal of
any Simulink data type to the data type speci�ed in its con�guration window.

For the project here considered, in particular, the Data Type Conversion block within
the Raspberry Pi system input macroblock performs the conversion from the int16 data,
supplied by the ALSA Audio Capture block, into the double data required by the Product
block.

The Data Type Conversion2 block, within the Raspberry Pi output macroblock, per-
forms, instead, the opposite conversion, in order to adapt the signal to the int16 format required
by the ALSA Audio Playback block.

In both cases, the adopted con�guration is shown in Fig.4.8.

7.3.8 Product

The Product block performs the product of its inputs, whose number is de�ned by the Number
of inputs parameter of the con�guration window. This parameter is set at 2, as shown in Fig.7.5.
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Figure 7.5: Product con�guration window

7.3.9 Max-Divide-Gain (Automatic Gain Control)

TheMax-Divide-Gain blocks, performing the automatic gain control, are described in Section
6.3.5.

For the current project this block adopts the same con�guration shown in Fig.6.10 and in
Fig.6.11.

7.3.10 Matrix Concatenate

The Matrix Concatenate block is described in Section 4.3.3. It is used to produce a two-
channel output signal (that is, a stereo signal), starting from the two mono signals at its input.
This operation is needed as the ALSA Audio Playback block, that follows the Matrix Con-
catenate block, requires a stereo input signal.

For the current project this block adopts the same con�guration shown in Fig.4.9.
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7.3.11 ALSA Audio Playback

The ALSA Audio Playback block is described in Section 4.3.4. It represents the Raspberry
Pi2's analog output. Its task is to perform the digital-to-analog conversion of the signal and
send it to the sound card for playback. For the current project this block adopts the same
con�guration shown in Fig.4.10.

7.3.12 Implementation and test of the 2-ASK transmitter

Once the Simulink project has been realized and tested through simulations, it is possible to
carry out the Deploy to Hardware procedure, as described in Section 4.4. The project will be
automatically executed as soon as the deploy procedure is completed. For the di�erent execution
modes see Section 4.5.

Connecting the Raspberry Pi2's input port (microphone port) to the signal generator, that
generates the carrier with a frequency around 10-15 kHz, and the output port to the oscilloscope,
according to the scheme in Fig.7.3, the 2-ASK signal can be �nally observed, as shown in Fig.7.6.

Figure 7.6: 2-ASK signal with 10 kHz carrier

7.4 4-ASK transmitter

The 4-ASK transmitter, shown in Fig.7.7, shows minimal variations compared to the previously
described 2-ASK transmitter (Fig.7.2). The changes concern only the Baseband Modulation
macroblock, in charge of generating the modulating signal. In the 4-ASK case, in fact, the
Baseband Modulation macroblock must generate a 4-PAM signal.
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Figure 7.7: Simulink sheme 4-ASK modulator

The 4-ASK transmitter is obtained, therefore, from the 2-ASK transmitter by simply replac-
ing the 2-ASK Baseband Modulation macroblock with the corresponding macroblock for the
4-ASK transmitter, described in Section 6.4.

7.5 Elementary blocks used

The list of the elementary blocks used for the realization of the project is provided hereafter,
along with the reference to the sections in which their functioning is described.

�Bernoulli Binary Generator (Section 6.3.1) �Data Type Conversion (Section 4.3.2)
�M-PAM Modulator Baseband (Section 6.5.2) �Product (Section 7.2.3)
�Complex to Real-Imag (Section 6.3.3) �Max - Divide - Gain (Section 6.3.5)
�Raised Cosine Transmit Filter (Section 6.3.4) �Matrix Concatenate (Section 4.3.3)
�ALSA Audio Capture (Section 5.3.1) �ALSA Audio Playback (Section 4.3.4)
�Multiport Selector (Section 7.3.6)

You can easily see that all the blocks were previously described.

7.5.1 Implementation and test of the 4-ASK transmitter

Once the Simulink project has been realized and tested through simulations, it is possible to
carry out the Deploy to Hardware procedure, as described in Section 4.4. The project will be
automatically executed as soon as the deploy procedure is completed. For the di�erent execution
modes see Section 4.5.

Connecting Raspberry Pi2's input port (microphone port) to the signal generator, that gen-
erates the carrier with a frequency around 10-15 kHz, and the output port to the oscilloscope,
according to the scheme in Fig.7.3, the 4-ASK signal can be �nally observed, as shown in Fig.7.6.
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Chapter 8

QPSK modulation with Raspberry Pi2

Quadrature phase shift keying (QPSK) is a digital modulation scheme in which two bits
modulate the amplitudes of two carrier waves, using the 2-ASK digital modulation scheme. The
two carrier waves di�er in their phase by π

2 and are thus called quadrature carriers, hence the
name of the scheme. The general expression of a QPSK signal is:

s(t) =
Vo√

2

∞∑
i=−∞

apig(t− iT ) cos(2πfot)−
Vo√

2

∞∑
i=−∞

aqig(t− iT ) sin(2πfot) (8.1)

where

� V0 is the carriers' amplitude, being V0 cos(2πfot) and V0 sin(2πfot) the two quadrature
carriers;

� api ∈ {−1, 1} and aqi ∈ {−1, 1} are the in-phase and quadrature symbols;

� g(t) is the waveform associated to each symbol;

� f0 is the carrier frequency;

� T is the time interval between one symbol and the following one.
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The QPSK signal expressed in 8.1 can be be generalized to produce an M-quadrature ampli-
tude modulation (M-QAM) using two L-ASK signals to modulate the carriers, with M = L2.

8.1 Equipment required for this experience

The experimental activity described in this chapter requires an oscilloscope and the following
equipment:

�Nr.1 Raspberry Pi2 (Fig.8.1(a)) �Nr.1 USB-micro USB cable (Fig.8.1(b))
�Nr.1 Micro SD memory card (Fig.8.1(c)) �Nr.1 USB-LAN adapter (Fig.8.1(d))
�Nr.1 Network cable (Fig.8.1(e)) �Nr.1 External audio card (Fig.8.1(f))
�Nr.1 3.5mm-RCA jack cable (Fig.8.1(g)) �Nr.2 BNC-RCA adapter (Fig.8.1(h))

(a) Raspberry Pi2 (b) USB-micro USB
cable

(c) Micro SD memory
card

(d) USB to LAN
adapter

(e) LAN cable (f) External au-
dio card

(g) 3.5mm-RCA
stereo jack cable

(h) RCA-BNC
adapter

Figure 8.1: Equipment

8.2 QPSK transmitter

The Simulink model used to implement a QPSK transmitter on a Raspberry Pi2 board is shown
in Fig.8.2. Fig.8.3 shows, instead, the interconnections among the di�erent devices constituting
the workstation.

In order to make the scheme shown in Fig.8.2 as clear as possible, four macroblocks have
been highlighted1.

1The Control LED macroblock has been discussed in Section 4.2.3. In the following, therefore, the details
of its functioning will not be provided any more.
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Figure 8.2: Simulink block scheme of the QPSK transmitter

Figure 8.3: Raspberry Pi's Input/Output connection scheme

The �rst macroblock, called BaseBand Modulation - Quadrature Phase Shift Keying ,
contains all the Simulink blocks which contribute to the generation of the QPSK modulated signal
starting from the bits. The data, shaped with the appropriate �lters, are then processed by the
macroblock BB to IF . At this point the signal passes through the Automatic Gain Control
AGC stage, which adapts the signal dynamic to the level required by subsequent macroblock,
called Rasberry Pi output .

8.2.1 BaseBand Modulation - Quadrature Phase Shift Keying

The macroblock in charge of producing the QPSK baseband signal starts from the bits generated
by the Bernoully Binary Generator and creates the correct phase variations that will be
added later to the carrier. The phase variations are generated by the simulink block QPSK -
Modulator Baseband, described in Section 8.3.2. Another operation made by the macroblock
is to separate the Real and Imaginary parts through the use of the Complex to Real-Imag
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Figure 8.4: Baseband modulation - QPSK

block. Finally, the two sequences of symbols are �ltered through the raised cosine shaping �lters
implemented in the Raised Cosine Transmit Filter block.

8.2.2 BB to IF

The BBtoIF macroblock converts the signal from the baseband to the bandwidth centered in
the intermediate frequency fIF . This operation is done through the use of a modulator the uses
two carriers in quadrature at a frequency fIF = 15 kHz.

The scheme of the BBtoIF macroblock indeed corresponds to the classic quadrature modu-
lator, with a real and an imaginary part product modulated with carriers that in quadrature to
each other. Conventionally, cos(2πfIF t) is used as the carrier of the real part and −sin(2πfIF t)
as the carrier of the imaginary part. The quadrature carriers are thus generated by the Cosine
Wave and Sine Wave blocks. The two signals are then summed into a single output signal.

In Fig.8.5, the settings of the blocks used to generate the carriers are shown. In particular,
a phase shift of π is added to generate −sin(2πft), whereas a phase shift of π/2 is added to
generate cos(2πft).

8.2.3 Max-Divide-Gain (Automatic Gain Control)

The blocks Max-Divide-Gain that realize the automatic control gain macroblock are detailed
in Section 6.3.5. The adopted model uses the same settings as shown in Fig.6.10 and Fig.6.11.

8.2.4 Raspberry Pi output

The Raspberry Pi output macroblock, described in Section 4.2.2, represents the signal output
port. The Data Type Conversion2, Matrix Concatenate, and ALSA Audio Playback
blocks have been described in Sections 4.3.2, 4.3.3, and 4.3.4, respectively.

8.2.5 Control LED

The Control LED macroblock, that is not really part of the QPSK modulator and just used
to check that the scheme is running on the board, have been already described in Section 4.2.3.
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(a) Settings of the phase carrier (cosine) (b) Settins of the quadrature carrier (sine)

Figure 8.5: Settings of the Cosine Wave and Sine Wave blocks

8.3 List of the adopted Simulink blocks

�Bernoulli Binary Generator (Section 8.3.1) �Max-Divide-Gain (Section 6.3.5)
�QPSK Modulator Baseband (Section 8.3.2) �Data Type Conversion (Section 4.3.2)
�Complex to Real-Imag (Section 8.3.3) �Matrix Concatenate (Section 4.3.3)
�Raised Cosine Transmit Filter (Section 6.3.4) �ALSA Audio Playback (Section 4.3.4)
�Sine Wave/Cosine Wave(Section 8.3.5)

8.3.1 Bernoully Binary Generator

The Bernoully Binary Generator block has been described in Section 6.3.1. It represents
the binary source of information, with the objective to generate an independent and random
sequence of bits with a Bernoulli distribution. The present model uses the settings shown in
Fig.8.6, with a bit rate Br = 48000

10 = 4800 [ bits ].

8.3.2 QPSK Modulator Baseband

The QPSK Modulator Baseband block generates four di�erent phase shifts, depending on
the value of the incoming pairs of bits. A Gray coding is used to have adjacent symbols di�ering
for a single bit, thus minimizing the bit error probability. The con�guration of the QPSK
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Figure 8.6: Settings of the Bernoulli Binary Generator block for the QPSK model

Modulator Baseband block is shown in Fig.8.7 and the constellation and phase values are are
presented in Fig.8.8.

Figure 8.7: Settings of the QPSK Modulator Baseband block

8.3.3 Complex to Real-Imag

TheComplex to Real-Imag block separates the real and imaginary parts of the complex signals
provided at its input. This allows the processing of the in-phase and quadrature components.
The settings of this block are shown in Fig.8.9.
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(a) Phase values (b) QPSK constellation

Figure 8.8: Phase values and constellation of the QPSK modulation

Figure 8.9: Settings of the Complex to Real-Imag block

8.3.4 Raised Cosine Transmit Filter

The Raised Cosine Transmit Filter block has been detailed in Section 6.3.4. The present
model adopts the same settings shown in Fig.6.8.

8.3.5 Sine Wave/Cosine Wave

The Sine Wave and Cosine Wave blocks generate the two carriers, in quadrature to each
other, that are required to bring the signal at the intermediate frequency. The settings of these
blocks, similar to those discussed in Section 4.3.1, are shown in Fig.8.5.

8.3.6 Data Type Conversion

The Data Type Conversion block has been shown in Section 4.3.2. It converts the input data
to the required type. This block autonomously inherits the correct input and output types as a
function of the connected blocks.
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8.3.7 Max-Divide-Gain (Automatic Gain Control)

The Max-Divide-Gain blocks, that realize the automatic gain control macroblock, have been
discussed in Section 6.3.5. The present model adopts the same settings as those shown in Fig.6.10
and Fig.6.11.

8.3.8 Matrix Concatenate

The Matrix Concatenate block has been detailed in Section 4.3.3. It is used to duplicate the
same signal over two channels, an operation that is necessary to provide a stereo-signal to the
ALSA Audio Playback block. The present model adopts the same settings as those that are
shown in Fig.4.9.

8.3.9 ALSA Audio Playback

The ALSA Audio Playback block has been discussed in Section 4.3.4. It represents the DAC
converter of the Raspberry Pi2, thus generating the analog output signal to be provided to the
headphone connector. The present model adoptts the same settings as those shown in Fig.4.10.

8.3.10 Implementation and test of the QPSK transmitter

Once the model has been created in Simulink and its correct operations have been tested through
simulations, the deploy to hardware process is performed, as detailed in Section 4.4. With the
connections shown in Fig.8.3, the output signal can be checked on the oscilloscope, as shown in
Fig.8.10, and on the spectrum analyzer, as shown in Fig.8.11

Figure 8.10: QPSK signal
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Chapter 9

2-FSK modulation with Raspberry Pi2

Binary FSK (Frequency Shift Keying), usually referred to simply as 2-FSK, is a frequency
modulation scheme in which the digital information is transmitted by shifting the frequency of
a continuous carrier in a binary manner, so that one frequency or the other is used depending
on the symbol being transmitted.

In the general case of FSK modulation with L levels (L-FSK), each symbol ai, carrying the
information of log2 L bit, is associated to the corresponding frequency shift, according to the
expression:

s(t) = V0cos

[
2π

(
f0 + ∆f

∞∑
i=−∞

airect(
t− iT
T

)

)
t

]
, (9.1)

where

� V0 represents the carrier amplitude;

� f0 is the carrier frequency;

� ∆f is the elementary frequency shift with respect to the carrier;

� ai represents the generic symbol (in the case L = 4, for example, ai ∈ {−3,−1, 1, 3});

� T is the time interval between one symbol and the following one;

� rect(t/T ) is the square pulse equal to 1 in the interval [−T
2 ,

T
2 ] and 0 elsewhere.

103



Raspberry Pi2 - TLC

9.1 Equipment required for this experience

The experimental activity described in this chapter requires an oscilloscope and the following
equipment:

�Nr.1 Raspberry Pi2 (Fig.9.1(a)) �Nr.1 cavo USB-micro USB (Fig.9.1(b))
�Nr.1 Micro SD memory card (Fig.9.1(c)) �Nr.1 USB-LAN adapter (Fig.9.1(d))
�Nr.1 Network cable (Fig.9.1(e)) �Nr.1 External audio card (Fig.9.1(f))
�Nr.2 3.5mm-RCA jack cable (Fig.9.1(g)) �Nr.2 BNC-RCA adapters (Fig.9.1(h))

(a) Raspberry Pi2 (b) USB-micro USB
cable

(c) Micro SD memory
card

(d) USB to LAN
adapter

(e) LAN cable (f) External au-
dio card

(g) 3.5mm-RCA
stereo jack cable

(h) RCA-BNC
adapter

Figure 9.1: Equipment

9.2 2-FSK transmitter

In this chapter the Simulink model for the hardware implementation of a 2-FSK transmitter
is introduced. With reference to eq.(9.1), in particular, the following settings are adopted:
V0 = 215 − 1, ai ∈ {−1, 1}, ∆f = 2.4 kHz, f0 = 7.2 kHz and T = 20

48000 s.

As for the bit-frequency correspondence, a sine wave with frequency f1 = 4.8 kHz is associated
to the bit 1, whereas a sine wave with frequency f2 = 9.6 kHz is associated to the bit 0.

In order to limit the signal bandwidth, it is advisable that the transitions between the two
sine waves occur with phase continuity: The choice of f1 and f2, together with the choice of the
bit rate Br = 48000

20 = 2400 [ bits ], guarantee this condition to be ful�lled. The duration T = 1
Br

of a bit is, in fact, a multiple of the periods of the two sine waves used by the modulation.

In this project the two sine waves are generated within the model, with no need for external
signal generators.
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Figure 9.2: Connection scheme

The Simulink model of the 2-FSK transmitter is shown Fig.9.3, whereas Fig.9.2 shows the
interconnections among the di�erent devices constituting the workstation.

Figure 9.3: 2-FSK Simulink transmitter scheme

In order to make the scheme in Fig.9.3 as clear as possible, four macroblocks have been
highlighted: Baseband Modulation, Frequency Modulation, Raspberry Pi output and
Control LED1.

1The Control LED macroblock has been discussed in Section 4.2.3. In the following, therefore, the details
of its functioning will not be provided any more.
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Figure 9.4: Frequency Modulation macroblock

9.2.1 Baseband Modulation

The Baseband Modulation macroblock is the 2-PAM modulator described in Section 6.6.1,
whose task is to generate a 2-PAM signal with square pulses. Its elementary blocks Bernoulli
Binary Generator, M-PAM Modulator Baseband, Complex to Real-Imag and FIR
interpolation are described in Sections 6.3.1, 6.3.2, 6.3.3 and 6.6.1, along with the corresponding
con�gurations, that are unchanged for the current project.

The Baseband Modulation output is, therefore, a 2-PAM signal with square pulses, like
the one shown in Fig.6.24.

9.2.2 Frequency Modulation

The Frequency Modulation macroblock implements the 2-FSK modulator, which is the core
of the whole project.

Depending on the current input symbol ai ∈ {−1, 1}, the Frequency Modulation mac-
roblock (Fig.9.4) outputs either the sine wave with frequency f1 = 4.8 kHz, generated by the
Sine Wave 1 block, or the sine wave with frequency f2 = 9.6 kHz, generated by the Sine
Wave -1 block.

The two Saturation blocks work as �switches�, controlled by the symbols ai, enabling only
one of the two sine waves to reach the macroblock's output: When the input symbol is 1, the
Saturation 1 block outputs the value 1; with input -1, on the other hand, the output value
is 0. This block controls the output of the Product 1 block, producing the 4.8 kHz sine wave
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generated by Sin Wave 1 in case of symbol 1, or a null signal, in case of symbol -1.

The blocks sequence Saturation -1, Gain, Sin Wave -1 and Product -1 works in a
perfectly specular way: In case of input symbol -1, the 9.6 kHz sine wave generated by Sin
Wave 2 is enabled at the Product -1 output; in case of symbol 1, on the other hand, the
output of the Product -1 block is null.

It follows that, depending on the symbol to transmit, one of the Add block's inputs is null
and the other one carries the sine wave associated to the symbol. The Add block's output, then,
reproduces the sine wave to transmit.

Table 9.1 shows the outputs of the di�erent blocks composing the Frequency Modulation
macroblock for the possible values of the input symbol.

ai Saturation 1 Saturation -1 Product 1 Product -1 Add

input output output output output output

1 1 0 sine at 4.8 kHz 0 sine at 4.8 kHz

-1 0 -1 0 sine at 9.6 kHz sine at 9.6 kHz

Table 9.1: Frequency Modulation macroblock

9.2.3 Raspberry Pi output

TheRaspberry Pi output macroblock is described in Section 4.2.2. It represents the Raspberry
Pi2's analog output. This macroblock adapts the signal at its input port to the format required
by the Raspberry Pi2's DAC, represented by theALSA Audio Playback block. For the current
project its elementary blocks adopt the same con�guration described in Section 4.3.2, 4.3.3 and
4.3.4.

9.2.4 Control LED

The only aim of the Control LED macroblock is to intermittently turn on and o� the Raspberry
Pi2's led during the execution of the project, visually con�rming the that the project is running.
This macroblock is discussed in Section 4.2.3.

9.3 Elementary blocks used

The list of the elementary blocks used for the project realization is provided hereafter, along
with the reference to the sections in which their functioning is described.

�Bernoulli Binary Generator (Section 6.3.1) �Gain (sect.9.3.7)
�M-PAM Modulator Baseband (Section 6.3.2) �Product (Section 9.3.8)
�Complex to Real-Imag (Section 6.3.3) �Add (Section 9.3.9)
�FIR Interpolation (Section 6.6) �Data Type Conversion (Section 4.3.2)
�Sin Wave (Section 9.3.5) �Matrix Concatenate (Section 4.3.3)
�Saturation (Section 9.3.6) �ALSA Audio Playback (Section 4.3.4)
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9.3.1 Bernoully Binary Generator

The Bernoully Binary Generator block is described in Section 6.3.1. It represents the binary
information source. Its task is to produce an output random sequence of independent bits with
Bernoulli statistics. For the current project this block adopts the same con�guration shown in
Fig.6.4, that entails a bit rate Br = 48000

20 = 2400 bit
s .

9.3.2 M-PAM Modulator Baseband

The M-PAM Modulator Baseband block is described in Section 6.3.2. It converts the input
bits ∈ {0, 1} into 2-PAM symbols ∈ {-1, 1}.

For the current project this block adopts the same con�guration shown in Fig.6.5.

As recalled in Section 6.3.2, despite the fact that 2-PAM symbols are purely real quantities,
the M-PAM Modulator Baseband block generates each of them in the complex format,
associating to each symbol an imaginary component with null value (e.g., [..., 1+ i0,−1+ i0, ...]).
A Complex to Real-Imag block is thus needed in order to remove the imaginary components.

9.3.3 Complex to Real-Imag

The Complex to Real-Imag block is described in Section 6.3.3. Its task is to remove the
symbols' imaginary component.

For the current project this block adopts the same con�guration shown in Fig.6.7.

9.3.4 FIR Interpolation

The FIR Interpolation block is described in Section 6.6.1. This block acts as a square pulse
shaping �lter. Its output port generates a 2-PAM signal with square pulses, as the one shown in
Fig.6.24.

For the current project this block adopts the same con�guration shown in Fig.6.23.

9.3.5 Sine Wave

The Sine Wave block is described in Section 4.3.1. In the current project, the two Sine Wave
blocks generates the two sine waves at 4.8 kHz and 9.6 kHz, associated to the symbols 1 and -1,
respectively.

Their con�guration windows are shown in Fig.9.5(a) and in Fig.9.5(b).

9.3.6 Saturation

The Saturation block limits its output signal within the range de�ned by the Upper limit and
Lower limit parameters of its con�guration window. In particular, when the input signal exceeds
Upper limit the output is saturated at such value. On the other hand, the output is saturated
at Lower limit when the input signal is under that value.

The con�guration windows for the Saturation 1 and Saturation -1 blocks used in this
project are shown in Fig. 9.6(a) and in Fig.9.6(b), respectively.
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(a) Con�guration window of the Sin Wave 1 block (b) Con�guration window of the Sin Wave -1 block

Figure 9.5: Sin Wave blocks' con�guration windows

(a) Con�guration window of the Saturation 1 block (b) Con�guration window of the Saturation -1

block

Figure 9.6: Saturation blocks' con�guration windows

9.3.7 Gain

The Gain block reproduces, as output signal, the input signal multiplied by the Gain factor
de�ned in its con�guration window. The con�guration adopted in the current project is shown
in Fig.9.7.
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Figure 9.7: COn�guration window of the Gain block

9.3.8 Product

The Product block performs the product of its inputs, whose number is de�ned by the Number
of inputs parameter requested by the con�guration window. This parameter is set at 2, as shown
in Fig.7.5.

9.3.9 Add

The Add block performs the sum or the di�erence of its inputs. In the this case the block must
sum up two inputs, that's why the List of signs �eld of its con�guration window is set as �++�,
as shown in Fig.9.8.

9.3.10 Data Type Conversion

The Data Type Conversion block is described in Section 4.3.2. It converts an input signal of
any Simulink data type to the data type speci�ed in its con�guration window.

For the project here considered, in particular, the Data Type Conversion block performs
the conversion into the int16 format, as required by the block ALSA Audio Playback. For
the current project this block adopts the same con�guration shown in Fig.4.8.

9.3.11 Matrix Concatenate

The Matrix Concatenate block is described in Section 4.3.3. It is used to produce a two-
channel output signal (that is, a stereo signal), starting from the two mono signals at its input.
This operation is needed as the ALSA Audio Playback block, that follows the Matrix Con-
catenate block, requires a stereo input signal. This block adopts the same con�guration shown
in Fig.4.9.
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Figure 9.8: Con�guration window of the Add block

9.3.12 ALSA Audio Playback

The ALSA Audio Playback block is described in Section 4.3.4. It represents the Raspberry
Pi2's analog output. Its task is to perform the digital-to-analog conversion of the signal and send
it to the sound card for playback.

For the current project this block adopts the same con�guration shown in Fig.4.10.

9.3.13 Implementation and test of the 2-FSK transmitter

Once the Simulink project has been realized and tested through simulations, it is possible to
carry out the Deploy to Hardware procedure, as described in Section 4.4. The project will be
automatically executed as soon as the deploy procedure is completed. For the di�erent execution
modes see Section 4.5.

Connecting the Raspberry Pi2's analog output to the oscilloscope, according to the scheme
in Fig.9.2, the 2-FSK signal can be �nally observed, as shown in Fig.9.9.
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Chapter 10

Raspberry Pi2 as an OFDM

transmitter

In this chapter we will describe the implementation of an Orthogonal Frequency Division
Multiplexing (OFDM) transmitter on a Raspberry Pi2 board.

The OFDM modulation is a digital modulation scheme that divides the transmission among
N di�erent carriers at adjacent frequencies, usually called subcarriers, that are transmitted
simultaneously.

In the following we will describe the implementation of an OFDM transmitter operating with
N = 64 subcarriers, Nu = 48 of which actually used to transmit the digital data.

The OFDM modulator described in the following does not implement the cyclic pre�x, that
will be introduced in future versions.

10.1 Equipment required for the realization of this experience

The experimental activity described in this chapter requires a spectrum analyser and the following
equipment:
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�Nr.1 Raspberry Pi2 (Fig.10.1(a)) �Nr.1 USB-micro USB cable (Fig.10.1(b))
�Nr.1 micro SD memory card (Fig.10.1(c)) �Nr.1 USB-LAN adapter (Fig.10.1(d))
�Nr.1 Network cable (Fig.10.1(e)) �Nr.1 External audio card (Fig.10.1(f))
�Nr.1 3.5mm-RCA jack cable (Fig.10.1(g)) �Nr.1 BNC-RCA adapter (Fig.10.1(h))

(a) Raspberry Pi2 (b) USB-micro USB
cable

(c) Micro SD memory
card

(d) USB to LAN
adapter

(e) LAN cable (f) External au-
dio card

(g) Stereo 3.5mm-
RCA jack cable

(h) RCA-BNC
adapter

Figure 10.1: Equipment

10.2 Raspberry Pi2 as OFDM transmitter

In Fig.10.2 the interconnection of the di�erent devices composing the workstation is represented.
The model of the OFDM transmitter is shown, instead, in Fig.10.3.

In order to be as clear as possible, seven macroblocks have been highlighted in the scheme
shown in Fig.10.3: Baseband Modulation,OFDM,Upsampling, BBtoIF,AGC-Automatic
Gain Control, Raspberry Pi output and Control LED1, described below.

10.2.1 Baseband Modulation

The Baseband Modulation macroblock generates real symbols ai ∈ {−1, 1}, starting from
the bits produced by the Bernoully Binary Generator block. Such symbols will be used to
modulate the subcarriers of the OFDM signal; as the alphabet used has just two symbols, the
modulation adopted for the subcarriers is 2-ASK.

TheM-PAM Modulator Baseband and Complex to Real-Imag elementary blocks have
been described in Sections 6.3.2 and 6.3.3, where they are used for the generation of a 2-PAM
signal. The corresponding con�gurations do not change for the project here considered.

1The Control LED macroblock has been discussed in Section 4.2.3. In the following, therefore, the details
of its functioning will not be provided any more.
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Figure 10.2: Connection scheme

Figure 10.3: Simulink model of the OFDM modulator

On the contrary, the Bernoulli Binary Generator block requires a speci�c con�guration,
that will be discussed in the following section.
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Figure 10.4: Con�guration window of the Bernoulli Binary Generator block

Bernoulli Binary Generator

The Bernoulli Binary Generator block represents, as in the previous cases, the binary in-
formation source. With reference to the con�guration window shown in Fig.10.4, the bits are
generated at a rate of one bit every Sample time seconds and are grouped, before passing them
to the following block, in frames with length equal to Sample per frame.

In this particular case, the value assigned to the Sample time parameter must ful�l the
condition:

Sample T ime =
Upsampling factor

bsymbol ·Audio Sampling Frequency
· N
Nu

, (10.1)

where

� Upsampling factor represents the upsampling factor introduced by the Upsampling mac-
roblock, that we will discuss in section 10.2.3;

� Audio Sampling Frequency is the sampling frequency de�ned in the ALSA Audio Play-
back block (section 4.3.4);

� bsymbol = log2M is the number of bits used to generate modulation symbols for each
subcarrier, with M denoting the number of symbols of the adopted modulation;

� N is the total number of subcarriers used;

G. Pasolini, A. Bazzi, M. Mirabella 116 Simulink De�ned Radio



Raspberry Pi2 - TLC

� Nu is the number of subcarriers actually used to transmit data.

In this speci�c case, as Audio Sampling Frequency=48000, Upsampling factor=20, bsymbol =
log2M = 2, N = 64 and Nu=48, it results Sample T ime = 20

48000 ·
64
48 .

The Sample per Frame parameter must be assigned a value that corresponds to the number
Nu of subcarriers actually used to transmit data. In this speci�c case, therefore, Sample per
Frame=48.

The remaining parameters of the Bernoulli Binary Generator con�guration window,
whose meaning was discussed in paragraph 6.3.1, are de�ned as shown in Fig.10.4.

The output of the Baseband Modulation macroblock is thus a sequence of frames, one
following the other, containing the 48 symbols that modulate the Nu = 48 useful subcarriers, as
shown in (10.2):

[symbol#1, symbol#2, ..., symbol#48︸ ︷︷ ︸],
frame

(10.2)

10.2.2 OFDM

Starting from the modulation symbols ai at its input, the OFDM macroblock generates the
baseband signal corresponding to an OFDM modulation with N = 64 subcarriers, Nu = 48 of
which are actually used to transmit modulation symbols (useful subcarriers) whereas the remain-
ing Nz = 16 have null amplitude (15 virtual subcarriers + 1 DC subcarrier in correspondence of
the frequency zero2). In this speci�c case, the N = 64 subcarriers are used as follows:

� 8 virtual subcarriers (from 1 to 8) with null amplitude;

� 24 data subcarriers (from 9 to 32) with 2-ASK modulation;

� 1 DC subcarrier (number 33) with null amplitude (corresponding to the zero frequency);

� 24 data subcarriers (from 34 to 57) with 2-ASK modulation;

� 7 virtual subcarriers (from 58 to 64) with null amplitude.

In Fig.10.5 the baseband spectrum3 of the signal generated by the OFDM macroblock is
shown, along with a reference number indicating the position of each subcarrier in the subcarriers'
sequence.

Denoting with Fs the sampling frequency of the signal generated by the OFDM macroblock
and with ∆f the interval between two consecutive subcarriers, the spectral component contained
in the Nyquist band [−Fs

2 , Fs2 ] is represented with a continuous line, while the periodic repetitions
with period Fs = N∆f , caused by the discrete-time nature of the signal, are represented with
a dashed line. In Fig.10.6 the spectrum has been enriched with the indication of the symbol
number4 associated to each subcarriers. A null amplitude is assigned to the remaining subcarriers
(DC and virtual).

2In order to facilitate the receiver in the research of the band center, the subcarrier corresponding to the zero
frequency (in the baseband) is usually assigned a null amplitude. The acronym DC means Direct Current.

3It is obviously an ideal schematic representation.
4The symbol number ∈ {1, 2, ..., 48} represents the position of the symbol in the frame.
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Figure 10.5: Signal spectrum

Figure 10.6: Signal spectrum with the symbol number associated to each subcarrier

The generation of this signal is the task of the IFFT block, that receives the N symbols
associated to all the N subcarriers (48 useful, 15 virtual and 1 DC) and produces the baseband
OFDM signal.

The IFFT block, however, needs to receive the symbols associated to the subcarriers ac-
cording to a particular order: the �rst symbol must be the one associated to the subcarrier
with 0 frequency, the second symbol the one associated to the subcarrier with frequency ∆f and
so on, until the last symbol, that must be the one associated to the subcarrier with frequency
(N − 1)∆f . In other words, the order of the N = 64 symbols at the input of the IFFT block
must be the one shown in Fig.10.7, that is:

[0, symbol#25, ..., symbol#48, 0, .., 0︸ ︷︷ ︸, symbol#1, ..., symbol#24].

15 zeros

(10.3)

The �rst step to pass from the 48 symbols frame (10.2) generated by the Baseband Mod-
ulation macroblock, to the 64 symbols frame (composed by 48 symbols+16 zeroes) reported in
(10.3), is performed by the Multiport Selector2 block. This block splits the 48 symbols frame
(10.2) at its input into two frames containing 24 symbols each. In particular, the frame it gener-
ates at the �rst output port contains those symbols occupying positions 25 to 48 in the original
frame, while the frame at the second output port contains those symbols occupying positions 1
to 24 in the original frame. The corresponding settings of the block's con�guration window are
shown in Fig.10.8.

The next step consists in the construction of the frame (10.3) by inserting in the proper
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Figure 10.7: Signal spectrum with the symbol number associated to each subcarrier

position the 16 zeroes corresponding to the DC subcarrier and to the 15 virtual subcarrier. The
block Pad1 has the task to create a vector of 39 elements, the �rst 24 of which correspond to
the symbols from 25 to 48 (that is, the �rst output ofMultiport Selector2 ), and the remaining
15 are 0s and represent the 15 virtual carriers. The con�guration setting for this block is shown
in Fig.10.9.

In order to eventually get to the frame (10.3), the block Matrix Concatenate is used,
concatenating in a single frame its 3 inputs, corresponding to

� the constant 0, corresponding to the amplitude of the DC subcarriers;

� the frame with the symbols 25 to 48 followed by 15 zeroes, generated by Pad1 block;

� the frame with the symbols 1 to 24, provided by the second output of the Multiport
Selector2 block.

The settings of the Matrix Concatenate block is shown in Fig.10.10.
Starting from the frame (10.3), it is �nally possible to generate the baseband OFDM signal

simply using the inverse discrete Fourier transform IFFT block, that associates the input sym-
bols in the time domain to the corresponding orthogonal subcarriers in the frequency domain.
The con�guration of this block is shown in Fig.10.11.

In order to keep the elaboration in frame based mode, a Frame conversion block is �-
nally inserted, following the IFFT block. The corresponding con�guration window is shown in
Fig.10.12.

10.2.3 Upsampling

The baseband signal generated by the OFDM macroblock has a sampling frequency of Fs =
48000
20 = 2400 samples

s . The sampling rate 1
Sample T ime = 48000

20
48
64 = 1800 samples

s chosen in the

Bernoully Binary Generator block has been, in fact, increased by a factor 64
48 by the IFFT

block, that outputs a frame of 64 elements for each frame of 48 elements received as input.
In order to modulate the baseband OFDM signal, the sampling frequency must be, therefore,

increased. It is convenient, on this regard, to increase it by a factor of 20, taking it to the value
48000 samples

s required by Raspberry Pi2's DAC.
The upsampling operation is performed by the sequence of blocks included in the Upsam-

pling macroblock, that performs an upsampling by a factor of 2 at �rst and then by a factor of
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Figure 10.8: Multiport Selector 's con�guration window

10. The two stage procedure is convenient, compared with a single stage upsampling by a factor
of 20, because it reduces the overall computational burden.

The �rst stage of the Upsampling macroblock introduces a 0 between one sample and
the other of the input signal. This operation increases the sampling frequency by a factor of
2, changing it from 2400 samples

s to 4800 samples
s , without modifying the signal spectrum. The

followingDigital Filter Design 2 �lter has therefore the task to remove one periodic repetition
out of two in the signal spectrum, as shown in Fig.10.13.

The signal spectrum at the �lter output shows periodic repetitions with period equal to 4800
Hz, as it is appropriate for a signal with a sampling frequency of 4800 samples

s .
The next stage, with the block performing the upsampling by a factor of 10 followed by a

�lter, works according to the same principle: the upsampling stage inserts nine 0s after each
input signal sample, increasing the sampling frequency by a factor of 10, and the �lter removes
9 periodic spectral repetitions out of 10, so that the �rst periodic repetition of the spectrum is
centred at 48000 samples

s .
In order to properly design the �lters, set Fs at the new sampling frequency, assign Fpass the

upper limit of the band to be preserved and assign Fstop the value of the old sampling frequency
minus the band to be preserved.

Fig. 10.14 shows the settings of both �lters.

10.2.4 BBtoIF

The BBtoIF macroblock modulates the signal, translating it from baseband to intermediate fre-
quency. Such operation is performed through a quadrature modulator with internally generated
carriers at a frequency fIF = 15 kHz.
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Figure 10.9: Pad block con�guration

The BBtoIF macroblock is a classic quadrature modulator, with two separate paths for the
real (in-phase) and the imaginary (quadrature) components of the signal. Each component is
upconverted by a mixer (represented by the Product block) driven by a cosine or a sine carrier,
generated by the Cosine Wave and Sine Wave blocks. Both modulated signals are then
summed up and taken out.

We conventionally use cos(2πfIF t) as carrier for the in-phase signal and −sin(2πfIF t) as
carrier for the quadrature signal.

Fig.10.15 shows the settings for the carriers' generating blocks. In particular, the −sin(2πft)
signal is generated introducing a π phase o�set to the sin(2πft) signal that would be generated
by default, while the cos(2πft) is generated introducing a π

2 phase o�set.

10.2.5 Max-Divide-Gain (Automatic Gain Control)

The Max-Divide-Gain blocks, realizing the automatic-gain-control macroblock, are described
in Section 6.3.5. The OFDM transmitter here discussed adopts the same con�guration shown in
Fig.6.10 and in Fig.6.11.
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Figure 10.10: Con�guration window of the Matrix Concatenate block

10.2.6 Raspberry Pi output

The Raspberry Pi output macroblock represents the signal output port. The elementary
blocks Data Type Conversion, Matrix Concatenate and ALSA Audio Playback are
described in Sections 4.3.2, 4.3.3 and 4.3.4.

10.2.7 Control LED

The Control LED macroblock has the only aim to intermittently turn on and o� the Raspberry
Pi2's led during the model execution. Its functioning is described in Section 4.3.6.

10.3 Elementary blocks used

The list of the elementary blocks used for the project realization is provided hereafter, along
with the reference to the sections in which their functioning is described.
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Figure 10.11: Con�guration window of the IFFT block

Figure 10.12: Con�guration window of the To Frame block
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Figure 10.13: Filtering after the upsampling by a factor of 2

(a) Filtro Fir con Fs=4800Hz (b) Filtro Fir con Fs=48000Hz

Figure 10.14: Filters'settings

�Bernoulli Binary Generator (Section 10.3.1) �Upsample (Section 10.3.10)
�M-PAM Modulator Baseband (Section 6.3.2) �Digital Filter Design (Section 10.3.11)
�Complex to Real-Imag (Section 6.3.3) �Sine Wave/Cosine Wave (Section 10.3.12)
�Multiport Selector (Section 10.3.4) �Product (Section 7.2.3)
�Pad (Section 10.3.5) �Add (Section 9.3.9)
�Constant (Section 10.3.6) �Max - Divide - Gain (Section 6.3.5)
�Matrix Concatenate (Section 4.3.3) �Data Type Conversion (Section 4.3.2)
�IFFT (Section 10.3.8) �Matrix Concatenate1 (Section 4.3.3)
�To Frame (Section 10.3.9) �ALSA Audio Playback (Section 4.3.4)

10.3.1 Bernoully Binary Generator

The Bernoully Binary Generator block, with the speci�c con�guration for the OFDM trans-
mitter, is described in Section 10.2.1. It represents the binary information source. Its task is to
produce a random sequence of independent bits with Bernoulli statistics.
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(a) Settings for the cos(2πft) generation (b) Settings for the −sin(2πft) generation

Figure 10.15: Con�guration windows for the Cosine Wave block and the Sine Wave block

10.3.2 M-PAM Modulator Baseband

The M-PAM Modulator Baseband block is described in Section 6.3.2. It converts the input
bits ∈ {0, 1} into 2-PAM symbols ∈ {-1, 1}.

For the current project this block adopts the same con�guration shown in Fig.6.5.

As recalled in Section 6.3.2, despite the fact that 2-PAM symbols are purely real quantities,
the M-PAM Modulator Baseband block generates each of them in the complex format,
associating to each symbol an imaginary component with null value (es. [..., 1 + i0,−1 + i0, ...]).
A Complex to Real-Imag block is thus needed in order to remove the imaginary components.

10.3.3 Complex to Real-Imag

The Complex to Real-Imag block is described in Section 6.3.3. Its task is to remove the
symbols' imaginary component. This block adopts the same con�guration shown in Fig.6.7.

10.3.4 Multiport Selector

TheMultiport Selector block divides the content of the single frame a its input into two di�er-
ent output frame. Its functioning is described in Section 10.2.2. The corresponding con�guration
window is shown in Fig.10.8.
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10.3.5 Pad

The Pad block is described in Section 10.2.2: it postpones a sequence of 15 zeroes, corresponding
to the 15 virtual carriers, to the symbols in its input frame. The number of added zeroes is the
result of the di�erence between the output frame length (39) and the input frame length (24).
The corresponding con�guration window is shown in Fig.10.9.

10.3.6 Constant

The Constant block generates the output value 0, corresponding to the amplitude of DC carrier.
The corresponding con�guration window is shown in Fig.10.16.

Figure 10.16: Con�guration window of the Constant block

10.3.7 Matrix Concatenate

The Matrix Concatenate block is discussed in Section 10.2.2. It is used to concatenate in
a single output frame the three inputs in which the symbols associated to the subcarriers are
divided. The corresponding con�guration window is shown in Fig.10.10.

10.3.8 IFFT

The IFFT block, described in Section 10.2.2, performs the inverse discrete Fourier transform of
its input signal. This block adopts the con�guration shown in Fig.10.11.

10.3.9 Frame Conversion

The Frame conversion1 block sets the sampling mode of the output signal. In this case the
frame based mode is chosen. The corresponding con�guration window is shown in Fig.10.12.
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10.3.10 Upsample

For a given upsampling factor L, the Upsample block adds L-1 zeroes after each input value. In
this way, the sampling frequency of the output signal increases by a factor of L, without causing
any distortion of the spectrum. The con�guration windows of the Upsample2 and Upsample3
blocks are shown in Fig.10.17.

(a) Upsample2. (b) Upsample3.

Figure 10.17: Con�guration windows

10.3.11 Digital Filter Design

The Digital Filter Design block, whose functioning is described in Section 10.2.3, represents a
�ltering stage. Its aim is to remove the undesired spectral components following the Upsample
block. The con�guration windows of the Digital Filter Design and Digital Filter Design1
blocks are shown in Fig.10.14.

10.3.12 Sine Wave/Cosine Wave

The Sine Wave andCosine Wave blocks generate the quadrature carriers for the upconversion
of the signal at intermediate frequency. The corresponding con�guration windows, similar to
those discussed in Section 4.3.1, are shown in Fig.10.15.

10.3.13 Product

The Product block performs the product of its inputs, whose number is de�ned by the Number
of inputs parameter of its con�guration window. In this project this parameter is set at 2, as
shown in Fig.7.5. The two Product1 and Product2 blocks act as mixers, performing product
modulations.

10.3.14 Add

The Add block performs the sum or the di�erence of its inputs. In this project the block must
sum up two inputs, that's why the List of signs �eld of its con�guration window is set as �++�,
as shown in Fig.9.8. The block performs, therefore, the sum of the two signals.
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10.3.15 Max-Divide-Gain (Automatic Gain Control)

TheMax-Divide-Gain block, composing the automatic-gain-control macroblock, are described
in Section 6.3.5. These blocks adopt the same con�gurations shown in Fig.6.10 and in Fig.6.11.

10.3.16 Data Type Conversion

The Data Type Conversion block is described in Section 4.3.2. It converts an input signal of
any Simulink data type to the data type speci�ed in its con�guration window. This block adopts
the same con�gurations shown in Fig.4.8.

10.3.17 Matrix Concatenate

The Matrix Concatenate block is described in Section 4.3.3. It is used to produce a two-
channel output signal (that is, a stereo signal), starting from the two mono signals at its input.
This operation is needed as the ALSA Audio Playback block, that follows the Matrix Con-
catenate block, requires a stereo input signal.

This block adopts the same con�guration shown in Fig.4.9.

10.3.18 ALSA Audio Playback

The ALSA Audio Playback block is described in Section 4.3.4. It represents the Raspberry
Pi2's analog output. Its task is to perform the digital-to-analog conversion of the signal and send
it to the sound card for playback.

This block adopts the same con�guration shown in Fig.4.10.

10.3.19 Implementation and test of the OFDM transmitter

Once the Simulink model is realized and checked through Simulink simulations, it is possible to
carry out the Deploy to Hardware, as described in Section 4.4. The implemented system starts
as soon as the download of the corresponding �les on the device is completed.

Connecting the Raspberry Pi2 to the spectrum analyser, according to the scheme in Fig.10.2,
the signal spectrum should appear as shown in Fig.10.18.

G. Pasolini, A. Bazzi, M. Mirabella 128 Simulink De�ned Radio
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